首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intellectual disability (ID) is one of the most common disabilities and, although many genes have been implicated in its etiology, the genetic heterogeneity of ID continues to expand. The purpose of the study was to describe a novel autosomal recessive non-syndromic ID locus. Autozygome and linkage analysis, and exome sequencing followed by RNA and protein analysis of the candidate disease gene were performed. We describe two multiplex consanguineous families with non-syndromic ID phenotype, which maps to a critical linkage locus on 3q26. Exome sequencing of the index in each family revealed the same homozygous truncating mutation in TNIK that results in complete loss of the protein. TNIK is a kinase with a well-established role in dendrite development and synaptic transmission. The phenotype we observe in human patients who lack TNIK is consistent with the previously published Tnik ?/? phenotype in the murine model. Our data strongly implicate TNIK deficiency in the causation of ID in humans.  相似文献   

2.
Cognitive impairment or intellectual disability (ID) is a widespread neurodevelopmental disorder characterized by low IQ (below 70). ID is genetically heterogeneous and is estimated to affect 1–3% of the world’s population. In affected children from consanguineous families, autosomal recessive inheritance is common, and identifying the underlying genetic cause is an important issue in clinical genetics. In the framework of a larger project, aimed at identifying candidate genes for autosomal recessive intellectual disorder (ARID), we recently carried out single nucleotide polymorphism-based genome-wide linkage analysis in several families from Ardabil province in Iran. The identification of homozygosity-by-descent loci in these families, in combination with whole exome sequencing, led us to identify possible causative homozygous changes in two families. In the first family, a missense variant was found in GRM1 gene, while in the second family, a frameshift alteration was identified in TRMT1, both of which were found to co-segregate with the disease. GRM1, a known causal gene for autosomal recessive spinocerebellar ataxia (SCAR13, MIM#614831), encodes the metabotropic glutamate receptor1 (mGluR1). This gene plays an important role in synaptic plasticity and cerebellar development. Conversely, the TRMT1 gene encodes a tRNA methyltransferase that dimethylates a single guanine residue at position 26 of most tRNAs using S-adenosyl methionine as the methyl group donor. We recently presented TRMT1 as a candidate gene for ARID in a consanguineous Iranian family (Najmabadi et al., 2011). We believe that this second Iranian family with a biallelic loss-of-function mutation in TRMT1 gene supports the idea that this gene likely has function in development of the disorder.  相似文献   

3.
Posterior microphthalmia (PM) is a relatively rare autosomal recessive condition with normal anterior segment and small posterior segment resulting in high hyperopia and retinal folding. It is an uncommon subtype of microphthalmia that has been mostly reported to coexist with several other ophthalmic conditions and to occur in sporadic cases. The membrane-type frizzled-related protein (MFRP) is the only gene so far reported implicated in autosomal recessive, non-syndromic and syndromic forms of PM. Here, we performed a clinical and genetic analysis using six consanguineous families ascertained from different regions of Tunisia and affected with non-syndromic PM that segregates as an autosomal recessive trait. To identify the disease-causing defect in these families, we first analysed MFRP gene, then some candidate genes (CHX10, OPA1, MITF, SOX2, CRYBB1-3 and CRYBA4) and loci (MCOP1, NNO1 and NNO2) previously implicated in different forms of microphthalmia. After exclusion of these genes and loci, we performed a genome-wide scan using a high density single nucleotide polymorphism (SNP) array 50 K in a large consanguineous pedigree. SNP genotyping revealed eight homozygous candidate regions on chromosomes 1, 2, 3, 6, 15, 17 and 21. Linkage analysis with additional microsatellite markers only retained the 2q37.1 region with a maximum LOD score of 8.85 obtained for D2S2344 at θ = 0.00. Further investigations are compatible for linkage of four more families to this region with a refined critical interval of 2.35 Mb. The screening of five candidate genes SAG, PDE6D, CHRND, CHRNG and IRK13 did not reveal any disease-causing mutation.  相似文献   

4.

Background  

Autosomal recessive primary microcephaly is a disorder of neurogenic mitosis that causes reduction in brain size. It is a rare heterogeneous condition with seven causative genes reported to date. Mutations in WD repeat protein 62 are associated with autosomal recessive primary microcephaly with cortical malformations. This study was initiated to screen WDR62 mutations in four consanguineous Pakistani families with autosomal recessive primary microcephaly.  相似文献   

5.
Intellectual disability (ID) is a heterogeneous entity defined as a substantial impairment of cognitive and adaptive function with an onset in early childhood and an IQ measure of less than 70. During the last few years, the next generation technologies, namely whole exome (WES) and whole genome sequencing (WGS), have given rise to the identification of many new genes for autosomal dominant (ADID), autosomal recessive (ARID) and X?linked forms of ID (XLID). The prevalence of ID is 1.5–2% for milder forms (IQ?<?70) and 0.3–0.5% for more severe forms of ID (IQ?<?50). Up to now, about 650 genes for ADID have been reported and it is expected that there are at least 350 genes still unidentified. Although the ADID genes can easily be classified according to the associated clinical findings, e.?g. different kind of seizures, abnormal body measurements, an advanced selection of reasonable genes for analyses is challenging. Many different panels for ID genes have been developed for a first diagnostic step, but more meaningful is the use of trio exome sequencing in individuals with sporadic ID. Using trio WES the mutation detection rate for de novo mutations in ID varies from 20 to 60%.Further research is needed for the identification of the remaining ID genes, a deeply understanding of the pathways and the development of therapies for the mostly rare causes of ID.  相似文献   

6.
Comprehensive genetic testing has the potential to become the standard of care for individuals with hearing loss. In this study, we investigated the genetic etiology of autosomal recessive nonsyndromic hearing loss (ARNSHL) in a Turkish cohort including individuals with cochlear implant, who had a pedigree suggestive of an autosomal recessive inheritance. A workflow including prescreening of GJB2 and a targeted next generation sequencing panel (Illumına TruSightTM Exome) covering 2761 genes that we briefly called as mendelian exome sequencing was used. This panel includes 102 deafness genes and a number of genes causing Mendelian disorders. Using this approach, we identified causative variants in 21 of 29 families. Three different GJB2 variants were present in seven families. Remaining 14 families had 15 different variants in other known NSHL genes (MYO7A, MYO15A, MARVELD2, TMIE, DFNB31, LOXHD1, GPSM2, TMC1, USH1G, CDH23). Of these variants, eight are novel. Mutation detection rate of our workflow is 72.4%, confirming the usefulness of targeted sequencing approach in NSHL.  相似文献   

7.
We report a consanguineous Pakistani family with seven affected individuals showing a syndromic form of congenital microcephaly. Clinical features of affected individuals include congenital microcephaly with sharply slopping forehead, moderate to severe mental retardation, anonychia congenita, and digital malformations. By screening human genome with microsatellite markers, this autosomal recessive condition was mapped to a 25.2 cM interval between markers D18S1150 and D18S1100 on chromosome 18p11.22–q12.3. However, the region of continuous homozygosity between markers D18S1150 and D18S997 spanning 15.33 cM, probably define the most likely candidate region for this condition. This region encompasses a physical distance of 12.03 Mb. The highest two-point LOD score of 3.03 was obtained with a marker D18S1104 and multipoint score reached a maximum of 3.43 with several markers. Six candidate genes, CEP76, ESCO1, SEH1L, TUBB6, ZNF519, and PTPN2 were sequenced, and were found to be negative for functional sequence variants.  相似文献   

8.
Because of the unbalanced sex ratio (1.3–1.4 to 1) observed in intellectual disability (ID) and the identification of large ID-affected families showing X-linked segregation, much attention has been focused on the genetics of X-linked ID (XLID). Mutations causing monogenic XLID have now been reported in over 100 genes, most of which are commonly included in XLID diagnostic gene panels. Nonetheless, the boundary between true mutations and rare non-disease-causing variants often remains elusive. The sequencing of a large number of control X chromosomes, required for avoiding false-positive results, was not systematically possible in the past. Such information is now available thanks to large-scale sequencing projects such as the National Heart, Lung, and Blood (NHLBI) Exome Sequencing Project, which provides variation information on 10,563 X chromosomes from the general population. We used this NHLBI cohort to systematically reassess the implication of 106 genes proposed to be involved in monogenic forms of XLID. We particularly question the implication in XLID of ten of them (AGTR2, MAGT1, ZNF674, SRPX2, ATP6AP2, ARHGEF6, NXF5, ZCCHC12, ZNF41, and ZNF81), in which truncating variants or previously published mutations are observed at a relatively high frequency within this cohort. We also highlight 15 other genes (CCDC22, CLIC2, CNKSR2, FRMPD4, HCFC1, IGBP1, KIAA2022, KLF8, MAOA, NAA10, NLGN3, RPL10, SHROOM4, ZDHHC15, and ZNF261) for which replication studies are warranted. We propose that similar reassessment of reported mutations (and genes) with the use of data from large-scale human exome sequencing would be relevant for a wide range of other genetic diseases.  相似文献   

9.
《Genomics》2020,112(4):2729-2733
Postaxial polydactyly (PAP) is characterized by development of extra digits, which mostly segregates in autosomal recessive pattern. The underlying genetic cause of recessive non-syndromic PAP type A has been associated with sequence variants in five different genes (ZNF141, IQCE, GLI1, FAM92A, KIAA0825).The present study was aimed to investigate clinical and genetic causes of PAPA in a consanguineous family of Pakistani origin. Microsatellite-based linkage analysis was used to search for the disease-causing gene. Linkage in the family was established at chromosome 5q15 harbouring a candidate gene KIAA0825. Subsequently, Sanger sequencing revealed a novel homozygous missense variant [c.50T>C; p. (Leu17Ser)] in the gene, which co-segregated with the disease within the family. Protein structural analysis predicted a substantial change in the secondary structure of the mutant protein affecting its function. This is the third disease causing variant identified in the KIAA0825. This has not only expanded spectrum of the mutations in the gene but also further substantiated its role in the limb development in human.  相似文献   

10.
Retinitis pigmentosa (RP) is the most common and highly heterogeneous form of hereditary retinal degeneration. This study was to identify mutations in the 60 genes that were known to be associated with RP in 157 unrelated Chinese families with RP. Genomic DNA from probands was initially analyzed by whole exome sequencing. Sanger sequencing was used to confirm potential candidate variants affecting the encoded residues in the 60 genes, including heterozygous variants from genes that are related to autosomal dominant RP, homozygous or compound heterozygous variants from genes that are related to autosomal recessive RP, and hemizygous variants from genes that are related to X-linked RP. Synonymous and intronic variants were also examined to confirm whether they could affect splicing. A total of 244 candidate variants were detected by exome sequencing. Sanger sequencing confirmed 240 variants out of the 244 candidates. Informatics and segregation analyses suggested 110 potential pathogenic mutations in 28 out of the 60 genes involving 79 of the 157 (50 %) families, including 31 (39 %, 31/79) families with heterozygous mutations in autosomal dominant genes, 37 (47 %, 37/79) families with homozygous (9) or compound heterozygous (28) mutations in autosomal recessive genes, and 11 (14 %, 11/79) families with hemizygous mutations in X-linked genes. Of the 110 identified variants, 74 (67 %) were novel. The genetic defects in approximately half of the 157 studies families were detected by exome sequencing. A comprehensive analysis of the 60 known genes not only expanded the mutation spectrum and frequency of the 60 genes in Chinese patients with RP, but also provided an overview of the molecular etiology of RP in Chinese patients. The analysis of the known genes also supplied the foundation and clues for discovering novel causative RP genes.  相似文献   

11.
Ellis–van Creveld syndrome is an autosomal recessive skeletal dysplasia primarily characterized by the features such as disproportionate dwarfism, short ribs, short limbs, dysplastic nails, cardiovascular malformations, post-axial polydactyly (PAP) (bilateral) of hands and feet. EVC/EVC2 located in head-to-head arrangement on chromosome 4p16 are the causative genes for EvC syndrome. In the study, we present two families, A and B, with Pakistani and Republic of Kosovo origin, respectively. They showed features of EvC syndrome and were clinically and genetically characterized. In family A, the affected members showed an additional feature of profound deafness. The whole exome sequencing (WES) in this family revealed two homozygous variants in EVC2 (c.30dupC; p.Thr11Hisfs*45) and TMC1 (\(\hbox {c}.1696\hbox {-}1\hbox {G}{>}\hbox {A}\)) genes. In family B, WES revealed novel compound heterozygous variants (p.Ser307Pro, \(\hbox {c}.2894{+}3\hbox {A}{>}\hbox {G}\)) in the EVC gene. This study reports first case of variants in the genes causing EvC syndrome and profound deafness in the same family.  相似文献   

12.
Intellectual disability (ID) affects approximately 1%–3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%–3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations.  相似文献   

13.
Autosomal recessive osteopetrosis is a severe fatal disorder with an average incidence of around 1:250,000. It is diagnosed soon after birth or within the 1st year of life with severe symptoms of abnormal bone remodelling. This study was aimed to identify the underlying genetic cause of the disease in a Pakistani family segregating infantile malignant osteopetrosis in autosomal recessive pattern. Whole exome sequencing of the proband was performed using the 51 Mb SureSelect V4 library kit and sequenced using the Illumina HiSeq2500 sequencing system. The reads were analysed using standard bioinformatic data analysis pipeline. The genotype of candidate variants was confirmed in the proband and his normal parents by Sanger sequencing. Two novel homozygous missense variants were found in the same codon 204 of CLCN7 NM_001287.5:c.[610A>T;612C>G] predicting p.(Ser204Trp) variant in the protein. Sanger sequencing and RFLP assay verified that both these variants were heterozygous in the unaffected parents. Moreover, these variants were not detected in the unrelated healthy Pakistani subjects (200 chromosomes), ExAC, dbSNP, or the 1000 Genomes Project data. Multiple bioinformatics tools unanimously predicted the p.(Ser204Trp) variant as deleterious. CLCN7 mutation p.(Ser204Trp) is the likely cause of the osteopetrosis disease in the Pakistani family. This study expands the restricted spectrum of CLCN7 mutations associated with infantile malignant osteopetrosis and indicates clinical significance of whole exome sequencing in the diagnosis of clinically and genetically heterogenous osteopetrosis phenotype. These data should be helpful in the improved genetic counselling, carrier identification and prenatal diagnosis of the affected family.  相似文献   

14.
De novo mutation is highly implicated in autism spectrum disorder (ASD). However, the contribution of post-zygotic mutation to ASD is poorly characterized. We performed both exome sequencing of paired samples and analysis of de novo variants from whole-exome sequencing of 2,388 families. While we find little evidence for tissue-specific mosaic mutation, multi-tissue post-zygotic mutation (i.e. mosaicism) is frequent, with detectable mosaic variation comprising 5.4% of all de novo mutations. We identify three mosaic missense and likely-gene disrupting mutations in genes previously implicated in ASD (KMT2C, NCKAP1, and MYH10) in probands but none in siblings. We find a strong ascertainment bias for mosaic mutations in probands relative to their unaffected siblings (p = 0.003). We build a model of de novo variation incorporating mosaic variants and errors in classification of mosaic status and from this model we estimate that 33% of mosaic mutations in probands contribute to 5.1% of simplex ASD diagnoses (95% credible interval 1.3% to 8.9%). Our results indicate a contributory role for multi-tissue mosaic mutation in some individuals with an ASD diagnosis.  相似文献   

15.
16.
《Translational oncology》2020,13(7):100778
Anal squamous cell carcinoma (ASCC) is a rare neoplasm. Chemoradiotherapy is the standard of care, with no therapeutic advances achieved over the past three decades. Thus, a deeper molecular characterization of this disease is still necessary. We analyzed 46 paraffin-embedded tumor samples from patients diagnosed with primary ASCC by exome sequencing. A bioinformatics approach focused in the identification of high-impact genetic variants, which may act as drivers of oncogenesis, was performed. The relation between genetics variants and prognosis was also studied. The list of high-impact genetic variants was unique for each patient. However, the pathways in which these genes are involved are well-known hallmarks of cancer, such as angiogenesis or immune pathways. Additionally, we determined that genetic variants in BRCA2, ZNF750, FAM208B, ZNF599, and ZC3H13 genes are related with poor disease-free survival in ASCC. This may help to stratify the patient's prognosis and open new avenues for potential therapeutic intervention. In conclusion, sequencing of ASCC clinical samples appears an encouraging tool for the molecular portrait of this disease.  相似文献   

17.
Autosomal recessive hypotrichosis is a rare form of human genetic disorder characterized by sparse to absent hair on scalp and rest of the body of affected individuals. Over the past few years at least five autosomal recessive forms of hypotrichosis loci have been mapped on different human chromosomes. In the present study, we report localization of another novel autosomal recessive hypotrichosis locus on human chromosome 10q11.23–22.3 in a four generation consanguineous Pakistani family. All the four patients in the family showed typical features of hereditary hypotrichosis including sparse hair on the scalp and rest of the body. Human genome scan using highly polymorphic microsatellite markers mapped the disease locus to a large region on chromosome 10. This novel locus maps to 29.81 cM (28.5 Mb) region, flanked by markers D10S538 and D10S2327 on chromosome 10q11.23–22.3. A maximum multipoint LOD score of 3.26 was obtained with several markers in this region. DNA sequence analysis of exons and splice-junction sites of four putative candidate genes (P4HA1, ZNF365, ZMYND17, MYST4), located in the linkage interval, were sequenced but were negative for functional sequence variants.  相似文献   

18.
Nonsyndromic deafness locus (DFNB48) segregating as an autosomal recessive trait has been mapped to the long arm of chromosome 15 in bands q23-q25.1 in five large Pakistani families. The deafness phenotype in one of these five families (PKDF245) is linked to D15S1005 with a lod score of 8.6 at =0, and there is a critical linkage interval of approximately 7 cM on the Marshfield human genetic map, bounded by microsatellite markers D15S216 (70.73 cM) and D15S1041 (77.69 cM). MYO9A, NR2E3, BBS4, and TMC3 are among the candidate genes in the DFNB48 region. The identification of another novel nonsyndromic recessive deafness locus demonstrates the high degree of locus heterogeneity for hearing impairment, particularly in the Pakistani population.  相似文献   

19.
20.
Intellectual disability (ID) is a common disease. While the etiology remains incompletely understood, genetic defects are a major contributor, which include mutations in genes encoding zinc finger proteins. These proteins modulate gene expression via binding to DNA. Consistent with this knowledge, we report here the identification of mutations in the ZNF407 gene in ID/autistic patients. In our study of an ID patient with autism, a reciprocal translocation 46,XY,t(3;18)(p13;q22.3) was detected. By using FISH and long-range PCR approaches, we have precisely mapped the breakpoints associated with this translocation in a gene-free region in chromosome 3 and in the third intron of the ZNF407 gene in chromosome18. The latter reduces ZNF407 expression. Consistent with this observation, in our subsequent investigation of 105 ID/autism patients with similar clinical presentations, two missense mutations Y460C and P1195A were identified. These mutations cause non-conservative amino acid substitutions in the linker regions between individual finger structures. In line with the linker regions being critical for the integrity of zinc finger motifs, both mutations may result in loss of ZNF407 function. Taken together, we demonstrate that mutations in the ZNF407 gene contribute to the pathogenesis of a group of ID patients with autism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号