首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrocalculous pancreatic diabetes (FCPD) is a secondary cause of diabetes due to chronic pancreatitis. Since the N34S variant of the SPINK1 trypsin inhibitor gene has been found to partially account for genetic susceptibility to chronic pancreatitis, we used a family-based and case-control approach in two separate ethnic groups from the Indian subcontinent, to determine whether N34S was associated with susceptibility to FCPD. Clear excess transmission of SPINK1 N34S to the probands with FCPD in 69 Bangladeshi families was observed (P<.0001; 20 transmissions and 2 nontransmissions). In the total study group (Bangladeshi and southern Indian) the N34S variant was present in 33% of 180 subjects with FCPD, 4.4% of 861 nondiabetic subjects (odds ratio 10.8; P<.0001 compared with FCPD), 3.7% of 219 subjects with type 2 diabetes, and 10.6% of 354 subjects with early-onset diabetes (aged <30 years) (P=.02 compared with the ethnically matched control group). These results suggest that the N34S variant of SPINK1 is a susceptibility gene for FCPD in the Indian subcontinent, although, by itself, it is not sufficient to cause disease.  相似文献   

2.

Background

The complex interactions between recurrent trypsin-mediated pancreatic injury, alcohol-associated pancreatic injury and SPINK1 polymorphisms in chronic pancreatitis (CP) are undefined. We hypothesize that CP occurs as a result of multiple pathological mechanisms (pathways) that are initiated by different metabolic or environmental factors (etiologies) and may be influenced differentially by downstream genetic risk factors. We tested this hypothesis by evaluating the differences in effect size of the high risk SPINK1 N34S haplotype on CP from multiple etiologies after combining clinical reports of SPINK1 N34S frequency using meta-analysis.

Methods and Findings

The Pubmed and the Embase databases were reviewed. We studied 24 reports of SPINK1 N34S in CP (2,421 cases, 4,857 controls) using reported etiological factors as surrogates for pathways and multiple meta-analyses to determine the differential effects of SPINK1 N34S between alcoholic and non-alcoholic etiologies. Using estimates of between-study heterogeneity, we sub-classified our 24 studies into four specific clusters. We found that SPINK1 N34S is strongly associated with CP overall (OR 11.00; 95% CI: 7.59–15.93), but the effect of SPINK1 N34S in alcoholic CP (OR 4.98, 95% CI: 3.16–7.85) was significantly smaller than in idiopathic CP (OR 14.97, 95% C.I. = 9.09–24.67) or tropical CP (OR 19.15, 95% C.I. = 8.83–41.56). Studies analyzing familial CP showed very high heterogeneity suggestive of a complex etiology with an I2 = 80.95%.

Conclusion

The small effect of SPINK1 N34S in alcoholic subjects suggests that CP is driven through a different pathway that is largely trypsin-independent. The results also suggest that large effect sizes of SPINK1 N34S in small candidate gene studies in CP may be related to a mixture of multiple etiologic pathways leading to the same clinical endpoint.  相似文献   

3.
Hydrophobins are amphipathic proteins secreted by filamentous fungi. When the industrial fungus Aspergillus oryzae is grown in a liquid medium containing the polyester polybutylene succinate co‐adipate (PBSA), it produces RolA, a hydrophobin, and CutL1, a PBSA‐degrading cutinase. Secreted RolA attaches to the surface of the PBSA particles and recruits CutL1, which then condenses on the particles and stimulates the hydrolysis of PBSA. Here, we identified amino acid residues that are required for the RolA–CutL1 interaction by using site‐directed mutagenesis. We quantitatively analyzed kinetic profiles of the interactions between RolA variants and CutL1 variants by using a quartz crystal microbalance (QCM). The QCM analyses revealed that Asp142, Asp171 and Glu31, located on the hydrophilic molecular surface of CutL1, and His32 and Lys34, located in the N‐terminus of RolA, play crucial roles in the RolA–CutL1 interaction via ionic interactions. RolA immobilized on a QCM electrode strongly interacted with CutL1 (KD = 6.5 nM); however, RolA with CutL1 variants, or RolA variants with CutL1, showed markedly larger KD values, particularly in the interaction between the double variant RolA‐H32S/K34S and the triple variant CutL1‐E31S/D142S/D171S (KD = 78.0 nM). We discuss a molecular prototype model of hydrophobin‐based enzyme recruitment at the solid–water interface.  相似文献   

4.
Kallikrein-related peptidases (KLKs) are a group of serine proteases, expressed in several tissues. Their activity is regulated by inhibitors including members of the serine protease of Kazal-type (SPINK) family. Recently, we discovered that SPINK6 is expressed in human skin and inhibits KLK5, KLK7, KLK14 but not KLK8. In this study we tested whether SPINK6 inhibits other members of the KLK family and caspase-14. Using chromogenic substrates, SPINK6 exhibited inhibitory activity against KLK12 and KLK13 with Ki around 1 nM, KLK4 with Ki = 27.3 nM, KLK6 with Ki = 140 nM, caspase-14 with a Ki approximating 1 μM and no activity against KLK1, KLK3 and KLK11. Taken together, SPINK6 is a potent inhibitor of distinct KLKs members.  相似文献   

5.
《Life sciences》1995,57(15):1401-1410
PD 128907 [4a R, 10 b R-(+)-trans- 3, 4, 4a, 10 b - tetrahydro - 4- n-propy12 H,5H-[1] benzopyrano[4,3-b]1,4-oxazin-9-ol.], a selective dopamine (DA) D3 receptor agonist ligand exhibits about a 1000-fold selectivity for human D3 receptors (Ki, 1 nM) versus human D2 receptors (Ki, 1183 nM) and a 10000-fold selectivity versus human D4 receptors (Ki, 7000 nM) using [3H]spiperone as the radioligand in CHO-K1-cells. Studies with [3H]PD 128907, showed saturable, high affinity binding to human D3 receptors expressed in CHO-K1 cells (CHO-K1-D3) with an equilibrium dissociation constant (Kd) of 0.99 nM and a binding density (Bmax) of 475 fmol/mg protein. Under the same conditions, there was no significant specific binding in CHO-K1-cells expressing human D2 receptors (CHO-K1-D2). The rank order of potency for inhibition of [3H]PD 128907 binding with reference DA agents was consistent with reported values for D3 receptors. These results indicate that [3H]PD 128907 is a new, highly selective D3 receptor ligand with high specific activity, high specific binding and low non-specific binding and therefore should be useful for further characterizing the DA D3 receptors.  相似文献   

6.
NG-Acylated argininamides, covering a broad range of lipophilicity (calculated log D values: ?1.8–12.5), were synthesized and investigated for NPY Y1 receptor (Y1R) antagonism, Y1R affinity and stability in buffer (NG-deacylation, yielding BIBP 3226). Broad structural variation of substituents was tolerated. The Ki (binding) and Kb values (Y1R antagonism) varied from low nM to one-digit μM. Most of the compounds proved to be sufficiently stable at pH 7.4 over 90 min to determine reliable pharmacological data in vitro. Exceptionally high instability was detected when a succinyl moiety was attached to the guanidine, probably, due to an intramolecular cleavage mechanism.  相似文献   

7.
An effective and rapid method for the microwave-assisted preparation of the key intermediate for the total synthesis of tetrahydroprotoberberines (THPBs) including l-stepholidine (l-SPD) was developed. Thirty-one THPB derivatives with diverse substituents on A and D ring were synthesized, and their binding affinity to dopamine D1, D2 and serotonin 5-HT1A and 5-HT2A receptors were determined. Compounds 18k and 18m were identified as partial agonists at the D1 receptor with Ki values of 50 and 6.3 nM, while both compounds act as D2 receptor antagonists (Ki = 305 and 145 nM, respectively) and 5-HT1A receptor full agonists (Ki = 149 and 908 nM, respectively). These two THPBs compounds exerted antipsychotic actions in animal models. Further electrophysiological studies employing single-unit recording in intact animals demonstrated that 18k-excited dopaminergic (DA) neurons are associated with its 5-HT1A receptor agonistic activity. These results suggest that these two compounds targeted to multiple neurotransmitter receptors may present novel lead drugs with new pharmacological profiles for the treatment of schizophrenia.  相似文献   

8.
Abstract

Two series of derivatives have been prepared and assayed as inhibitors of two physiologically relevant serine proteases, human thrombin and human trypsin. The first series includes alkyl-/ aralkyl-/aryl- and hetarylsulfonyl-aminoguanidines. It was thus observed that sulfanilyl-aminoguanidine possesses moderate but intrinsically selective thrombin inhibitory properties, with Ki values around 90 and 1400 nM against thrombin and trypsin respectively. Further elaboration of this molecule afforded compounds that inhibited thrombin with Ki values in the range 10–50 nM, whereas affinity for trypsin remained relatively low. Such compounds were obtained either by attaching benzyloxycarbonyl- or 4-toluenesulfonylureido-protected amino acids (such as D-Phe, L-Pro) or dipeptides (such as Phe-Pro, Gly-His, β-Ala-His or Pro-Gly) to the N-4 atom of the lead molecule, sulfanilyl-aminoguanidine, or by attaching substituted-pyridinium-propylcarboxamido moieties to this lead. Thus, this study brings novel insights regarding a novel non-basic S1 anchoring moiety (i, e., SO2NHNHC(=NH)NH2), and new types of peptidomimetic scaffolds obtained by incorporating tosylureido-amino acids/pyridinium-substituted-GABA moieties in the hydrophobic binding site(s). Structure-activity correlations of the new serine protease inhibitors are also discussed based on a QSAR model described previously for a large series of structurally-related derivatives (Supuran et al. (1999) J. Med. Chem., in press).  相似文献   

9.

Background

SCN5A is a susceptibility gene for type 3 long QT syndrome, Brugada syndrome, and sudden infant death syndrome. I Na dysfunction from mutated SCN5A can depend upon the splice variant background in which it is expressed and also upon environmental factors such as acidosis. S1787N was reported previously as a LQT3-associated mutation and has also been observed in 1 of 295 healthy white controls. Here, we determined the in vitro biophysical phenotype of SCN5A-S1787N in an effort to further assess its possible pathogenicity.

Methods and Results

We engineered S1787N in the two most common alternatively spliced SCN5A isoforms, the major isoform lacking a glutamine at position 1077 (Q1077del) and the minor isoform containing Q1077, and expressed these two engineered constructs in HEK293 cells for electrophysiological study. Macroscopic voltage-gated I Na was measured 24 hours after transfection with standard whole-cell patch clamp techniques. We applied intracellular solutions with pH7.4 or pH6.7. S1787N in the Q1077 background had WT-like I Na including peak I Na density, activation and inactivation parameters, and late I Na amplitude in both pH 7.4 and pH 6.7. However, with S1787N in the Q1077del background, the percentages of I Na late/peak were increased by 2.1 fold in pH 7.4 and by 2.9 fold in pH 6.7 when compared to WT.

Conclusion

The LQT3-like biophysical phenotype for S1787N depends on both the SCN5A splice variant and on the intracellular pH. These findings provide further evidence that the splice variant and environmental factors affect the molecular phenotype of cardiac SCN5A-encoded sodium channel (Nav1.5), has implications for the clinical phenotype, and may provide insight into acidosis-induced arrhythmia mechanisms.  相似文献   

10.
Currently available rapid diagnostic tests (RDTs) for malaria show large variation in sensitivity and specificity, and there are concerns about their stability under field conditions. To improve current RDTs, monoclonal antibodies (mAbs) for novel malaria antigens have been developed and screened for their possible use in new diagnostic tests. Three antigens, glutamate rich protein (GLURP), dihydrofolate reductase-thymidylate synthase (DHFR-TS) and heme detoxification protein (HDP), were selected based on literature searches. Recombinant antigens were produced and used to immunize mice. Antibody-producing cell lines were subsequently selected and the resulting antibodies were screened for specificity against Plasmodium falciparum and Plasmodium vivax. The most optimal antibody couples were selected based on antibody affinity (expressed as dissociation constants, KD) and detection limit of crude antigen extract from P. falciparum 3D7 culture. The highest affinity antibodies have KD values of 0.10 nM ± 0.014 (D5) and 0.068 ± 0.015 nM (D6) for DHFR-TS mAbs, 0.10 ± 0.022 nM (H16) and 0.21 ± 0.022 nM (H18) for HDP mAbs and 0.11 ± 0.028 nM (G23) and 0.33 ± 0.093 nM (G22) for GLURP mAbs. The newly developed antibodies performed at least as well as commercially available histidine rich protein antibodies (KD of 0.16 ± 0.13 nM for PTL3 and 1.0 ± 0.049 nM for C1–13), making them promising reagents for further test development.Key words: plasmodium, Plasmodium falciparum, malaria, diagnostics, rapid diagnostic test, monoclonal antibodies, glutamate rich protein, dihydrofolate reductase-thymidylate synthase, heme detoxification protein  相似文献   

11.
A series of 1-phenylbenzazepines containing bromine or chlorine substituents at the ortho position of the appended phenyl ring (2′-monosubstituted or 2′,6′- disubstituted patterns) were synthesized and evaluated for affinity towards dopamine D1R, D2R and D5R. As is typical of the 1-phenylbenzazepine scaffold, the compounds displayed selectivity towards D1R and D5R; analogs generally lacked affinity for D2R. Interestingly, 2′,6′-dichloro substituted analogs showed modest D5R versus D1R selectivity whereas this selectivity was reversed in compounds with a 2′-halo substitution pattern. Compound 10a was identified as a D1R antagonist (Ki = 14 nM; IC50 = 9.4 nM).  相似文献   

12.
The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys18) that can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys18 by glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. As aspartate substitutions have been previously used to mimic cysteine oxidation, we characterized the biochemical properties of Rac1C18D. We also evaluated Rac1C18S as a redox-insensitive variant and found that it retains structural and biochemical properties similar to those of Rac1WT but is resistant to thiol oxidation. In addition, Rac1C18D, but not Rac1C18S, shows greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. We employed Rac1C18D in cell-based studies to assess whether this fast-cycling variant, which mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1C18D in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1WT and the redox-insensitive Rac1C18S variant. Moreover, expression of Rac1C18D in HEK-293T cells greatly promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys18 is a novel posttranslational modification that upregulates Rac1 activity.  相似文献   

13.
Autophagy is an intracellular degradation system in eukaryotic cells that occurs at a basal level. It can also be induced in response to environmental signals including nutrients, hormones, microbial pathogens, and growth factors, although the mechanism is not known in detail. We previously demonstrated that excessive autophagy is induced within pancreatic acinar cells deficient in Spink3, which is a trypsin inhibitor. SPINK1, the human homolog of murine Spink3, has structural similarity to epidermal growth factor (EGF), and can bind and stimulate the EGF receptor (EGFR). To analyze the role of the EGFR in pancreatic development, in the regulation of autophagy in pancreatic acinar cells, and in cerulein-induced pancreatitis, we generated and examined acinar cell-specific Egfr-deficient (Egfr−/−) mice. Egfr−/− mice showed no abnormalities in pancreatic development, induction of autophagy, or cerulein-induced pancreatitis, suggesting that Egfr is dispensable for autophagy regulation in pancreatic acinar cells.  相似文献   

14.
HA22-LR is a recombinant immunotoxin for the treatment of B-cell malignancies that contains the Fv portion of an anti-CD22 antibody fused to a functional portion of Pseudomonas exotoxin A. In the present study, we attempted to improve this molecule. First, we produced a single-chain version of HA22-LR (scdsFv-HA22-LR) in which a peptide linker was introduced between the disulfide-linked light and heavy chains to enable production via single fermentation. No difference in cytotoxic activity was observed between scdsFv-HA22-LR and prototype HA22-LR. Next, we attempted to increase the affinity of scdsFv-HA22-LR by using alanine scanning mutagenesis of complementarity determining regions (CDRs) to assess the specific contribution of each CDR residue to the antigen binding. We found that mutation of asparagine 34 in VLCDR1, which is located at the VL/VH interface, to alanine (N34A) caused a substantial increase in affinity and activity. Estimated KD values measured by fluorescence-activated cell sorting were lowered by 10-fold: 0.056 nM in the N34A mutant compared to 0.58 nM in wild type (WT). Cell viability assays of CD22-positive B-cell lymphoma and leukemia cell lines showed that the N34A mutant had increased cytotoxicity ranging from ∼2 (HAL-1, IC50(WT): 2.37 ± 0.62 ng/ml, IC50(N34A): 1.32 ± 0.41 ng/ml) to 10 (SUDHL-6, IC50(WT): 0.47 ± 0.090 ng/ml, IC50(N34A): 0.048 ± 0.018 ng/ml)-fold compared to WT immunotoxin. The present study suggests that the N34A mutant of scdsFv-HA22-LR could have important consequences in a clinical setting.Key words: immunotoxin, HA22, affinity-maturation, alanine scan, VH/VL interface  相似文献   

15.

Background

Listeria adhesion protein (LAP) is a housekeeping bifunctional enzyme consisting of N-terminal acetaldehyde dehydrogenase (ALDH) and C-terminal alcohol dehydrogenase (ADH). It aids Listeria monocytogenes in crossing the epithelial barrier through a paracellular route by interacting with its host receptor, heat shock protein 60 (Hsp60). To gain insight into the binding interaction between LAP and Hsp60, LAP subdomain(s) participating in the Hsp60 interaction were investigated.

Methods

Using a ModBase structural model, LAP was divided into 4 putative subdomains: the ALDH region contains N1 (Met1–Pro223) and N2 (Gly224–Gly411), and the ADH region contains C1 (Gly412–Val648) and C2 (Pro649–Val866). Each subdomain was cloned and overexpressed in Escherichia coli and purified. Purified subdomains were used in ligand overlay, immunofluorescence, and bead-based epithelial cell adhesion assays to analyze each domain''s affinity toward Hsp60 protein or human ileocecal epithelial HCT-8 cells.

Results

The N2 subdomain exhibited the greatest affinity for Hsp60 with a K D of 9.50±2.6 nM. The K D of full-length LAP (7.2±0.5 nM) to Hsp60 was comparable to the N2 value. Microspheres (1 µm diameter) coated with N2 subdomain showed significantly (P<0.05) higher binding to HCT-8 cells than beads coated with other subdomains and this binding was inhibited when HCT-8 cells were pretreated with anti-Hsp60 antibody to specifically block epithelial Hsp60. Furthermore, HCT-8 cells pretreated with purified N2 subdomain also reduced L. monocytogenes adhesion by about 4 log confirming its involvement in interaction with epithelial cells.

Conclusion

These data indicate that the N2 subdomain in the LAP ALDH domain is critical in initiating interaction with mammalian cell receptor Hsp60 providing insight into the molecular mechanism of pathogenesis for the development of potential anti-listerial control strategies.  相似文献   

16.
Phospholipids, the major structural components of membranes, can also have functions in regulating signaling pathways in plants under biotic and abiotic stress. The effects of adding phospholipids on the activity of stress-induced calcium dependent protein kinase (CaCDPK1) from chickpea are reported here. Both autophosphorylation as well as phosphorylation of the added substrate were enhanced specifically by phosphatidylcholine and to a lesser extent by phosphatidic acid, but not by phosphatidylethanolamine. Diacylgylerol, the neutral lipid known to activate mammalian PKC, stimulated CaCDPK1 but at higher concentrations. Increase in Vmax of the enzyme activity by these phospholipids significantly decreased the Km indicating that phospholipids enhance the affinity towards its substrate. In the absence of calcium, addition of phospholipids had no effect on the negligible activity of the enzyme. Intrinsic fluorescence intensity of the CaCDPK1 protein was quenched on adding PA and PC. Higher binding affinity was found with PC (K½ = 114 nM) compared to PA (K½ = 335 nM). We also found that the concentration of PA increased in chickpea plants under salt stress. The stimulation by PA and PC suggests regulation of CaCDPK1 by these phospholipids during stress response.  相似文献   

17.
Tissue kallikreins (KLKs), in particular KLK5, 7 and 14 are the major serine proteases in the skin responsible for skin shedding and activation of inflammatory cell signaling. In the normal skin, their activities are controlled by an endogenous protein protease inhibitor encoded by the SPINK5 gene. Loss-of-function mutations in SPINK5 leads to enhanced skin kallikrein activities and cause the skin disease Netherton Syndrome (NS). We have been developing inhibitors based on the Sunflower Trypsin Inhibitor 1 (SFTI-1) scaffold, a 14 amino acids head-to-tail bicyclic peptide with a disulfide bond. To optimize a previously reported SFTI-1 analogue (I10H), we made five analogues with additional substitutions, two of which showed improved inhibition. We then combined those substitutions and discovered a variant (Analogue 6) that displayed dual inhibition of KLK5 (tryptic) and KLK7 (chymotryptic). Analogue 6 attained a tenfold increase in KLK5 inhibition potency with an Isothermal Titration Calorimetry (ITC) Kd of 20nM. Furthermore, it selectively inhibits KLK5 and KLK14 over seven other serine proteases. Its biological function was ascertained by full suppression of KLK5-induced Protease-Activated Receptor 2 (PAR-2) dependent intracellular calcium mobilization and postponement of Interleukin-8 (IL-8) secretion in cell model. Moreover, Analogue 6 permeates through the cornified layer of in vitro organotypic skin equivalent culture and inhibits protease activities therein, providing a potential drug lead for the treatment of NS.  相似文献   

18.
The Steroid hormon 1α, @5-Dihydroxyvitamin D3 has been shown to expert rapid effect (15 s to 5 min) in osteoblast. These occur in osteoblast-like cells lacking the nuclear vitamin D receptor, ROS 24/1, suggesting that a separate signalling system mediates the rapid action. These non-genomic action include rapid activation of phospholipase C and opening of calcium channels, pointing to a membrane localization of this signalling system. Previous studies have shown that the 1β epimer of 1α25-dihydroxyvitamina D3 can block these rapid action, indicating that the 1β epimer may bind to the recptor responsible for the rapid action sin a competative manner. We have assessed the displacement of 3H-1α,25dihydroxyvitamin D3 by vitamin D compounds, as well as the apparent dissociation constant of 1α25-dihydroxyvitamin D3 and its 1β epimer for the memberane receptor in membrane prepration from ROS 24/1 cells. Increasing concentrations of 1α25-dihydroxyvitamin D3, 7.25 nM to 725 nM, displaced 3H-1α25-dihydrxyvitamin D3 from the membranes with 725 nM of the hormone displacing 40–49% of the radioactivity. Similarly, 1β,25-dihydroxyvitamin D3, 7.25 nM and 72.5 nM, displaced 1α25-dihydroxyvitamin D3 binding while 25-hydroxyvitamin D3, 7.25 nM, did not. The apparent dissociation constant (KD) for 1α25-dihydroxyvitamin D3 was detrermined from displacement of 3H-1α25-dihydroxyvitamin D3 yielding a value of 8.1 × 10?7 M by Scatchard analysis. The KD for the 1β epimer determine from displacement of 3H-1α25-dihydroxyvitamin D3 was 4.8 × 10?7 M. The data suggest the presence of a receptor on the membrane of ROS 24/1 cells that reconize 1α25-dihydroxyvitamin D3 and its 1β epimer, but not 25-dihydroxyvitamin D3. Its ability to reconize the 1β epimer which appears to be a specific anagonist of the rapid effect of the hormone suggests that these studies may be the initial steps in the isolation and characterization of the signalling system mediating the rapid action of vitamin D.  相似文献   

19.
Kallikrein-related peptidases (KLKs) play a central role in skin desquamation. They are tightly controlled by specific inhibitors, including the lymphoepithelial Kazal-type inhibitor (LEKTI) encoded by SPINK5 and LEKTI-2 encoded by SPINK9. Herein, we identify SPINK6 as a selective inhibitor of KLKs in the skin. Unlike LEKTI but similar to LEKTI-2, SPINK6 possesses only one typical Kazal domain. Its mRNA was detected to be expressed at low levels in several tissues and was induced during keratinocyte differentiation. Natural SPINK6 was purified from human plantar stratum corneum extracts. Immunohistochemical analyses revealed SPINK6 expression in the stratum granulosum of human skin at various anatomical localizations and in the skin appendages, including sebaceous glands and sweat glands. SPINK6 expression was decreased in lesions of atopic dermatitis. Using KLK5, KLK7, KLK8, KLK14, thrombin, trypsin, plasmin, matriptase, prostasin, mast cell chymase, cathepsin G, neutrophil elastase, and chymotrypsin, inhibition with recombinant SPINK6 was detected only for KLK5, KLK7, and KLK14, with apparent Ki values of 1.33, 1070, and 0.5 nm, respectively. SPINK6 inhibited desquamation of human plantar callus in an ex vivo model. Our findings suggest that SPINK6 plays a role in modulating the activity of KLKs in human skin. A selective inhibition of KLKs by SPINK6 might have therapeutic potential when KLK activity is elevated.  相似文献   

20.
The tritium-labeled dipeptide bestim (γ-D-Glu-L-Trp) with a specific activity of 45 Ci/mmol was obtained by high-temperature solid-state catalytic isotope exchange. It was found that [3H]bestim binds with a high affinity to murine peritoneal macrophages (K d 2.1 ± 0.1 nM) and thymocytes (K d 3.1 ± 0.2 nM), as well as with plasma membranes isolated from these cells (K d 18.6 ± 0.2 and 16.7 ± 0.3 nM, respectively). The specific binding of [3H]bestim to macrophages and thymocytes was inhibited by the unlabeled dipeptide thymogen (L-Glu-L-Trp) (K i 0.9 ± 0.1 and 1.1 ± 0.1 nM, respectively). After treatment with trypsin, macrophages and thymocytes lost the ability to bind [3H]bestim. Bestim in the concentration range of 10?10 to 10?6 M reduced the adenylate cyclase activity in the membranes of murine macrophages and thymocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号