首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wnt pathway-driven proliferation and renewal of the intestinal epithelium must be tightly controlled to prevent development of cancer and barrier dysfunction. Although type I interferons (IFN) produced in the gut under the influence of microbiota are known for their antiproliferative effects, the role of these cytokines in regulating intestinal epithelial cell renewal is largely unknown. Here we report a novel role for IFN in the context of intestinal knockout of casein kinase 1α (CK1α), which controls the ubiquitination and degradation of both β-catenin and the IFNAR1 chain of the IFN receptor. Ablation of CK1α leads to the activation of both β-catenin and IFN pathways and prevents the unlimited proliferation of intestinal epithelial cells despite constitutive β-catenin activity. IFN signaling contributes to the activation of the p53 pathway and the appearance of apoptotic and senescence markers in the CK1α-deficient gut. Concurrent genetic ablation of CK1α and IFNAR1 leads to intestinal hyperplasia, robust attenuation of apoptosis, and rapid and lethal loss of barrier function. These data indicate that IFN play an important role in controlling the proliferation and function of the intestinal epithelium in the context of β-catenin activation.  相似文献   

2.
Factors regulating the proliferation and apoptosis of intestinal stem cells (ISCs) remain incompletely understood. Because ISCs exist among microbial ligands, immune receptors such as toll-like receptor 4 (TLR4) could play a role. We now hypothesize that ISCs express TLR4 and that the activation of TLR4 directly on the intestinal stem cells regulates their ability to proliferate or to undergo apoptosis. Using flow cytometry and fluorescent in situ hybridization for the intestinal stem cell marker Lgr5, we demonstrate that TLR4 is expressed on the Lgr5-positive intestinal stem cells. TLR4 activation reduced proliferation and increased apoptosis in ISCs both in vivo and in ISC organoids, a finding not observed in mice lacking TLR4 in the Lgr5-positive ISCs, confirming the in vivo significance of this effect. To define molecular mechanisms involved, TLR4 inhibited ISC proliferation and increased apoptosis via the p53-up-regulated modulator of apoptosis (PUMA), as TLR4 did not affect crypt proliferation or apoptosis in organoids or mice lacking PUMA. In vivo effects of TLR4 on ISCs required TIR-domain-containing adapter-inducing interferon-β (TRIF) but were independent of myeloid-differentiation primary response-gene 88 (MYD88) and TNFα. Physiological relevance was suggested, as TLR4 activation in necrotizing enterocolitis led to reduced proliferation and increased apoptosis of the intestinal crypts in a manner that could be reversed by inhibition of PUMA, both globally or restricted to the intestinal epithelium. These findings illustrate that TLR4 is expressed on ISCs where it regulates their proliferation and apoptosis through activation of PUMA and that TLR4 regulation of ISCs contributes to the pathogenesis of necrotizing enterocolitis.  相似文献   

3.
Necrotizing enterocolitis (NEC) is the leading cause of death from gastrointestinal disease in preterm infants and is characterized by translocation of LPS across the inflamed intestine. We hypothesized that the LPS receptor (TLR4) plays a critical role in NEC development, and we sought to determine the mechanisms involved. We now demonstrate that NEC in mice and humans is associated with increased expression of TLR4 in the intestinal mucosa and that physiological stressors associated with NEC development, namely, exposure to LPS and hypoxia, sensitize the murine intestinal epithelium to LPS through up-regulation of TLR4. In support of a critical role for TLR4 in NEC development, TLR4-mutant C3H/HeJ mice were protected from the development of NEC compared with wild-type C3H/HeOUJ littermates. TLR4 activation in vitro led to increased enterocyte apoptosis and reduced enterocyte migration and proliferation, suggesting a role for TLR4 in intestinal repair. In support of this possibility, increased NEC severity in C3H/HeOUJ mice resulted from increased enterocyte apoptosis and reduced enterocyte restitution and proliferation after mucosal injury compared with mutant mice. TLR4 signaling also led to increased serine phosphorylation of intestinal focal adhesion kinase (FAK). Remarkably, TLR4 coimmunoprecipitated with FAK, and small interfering RNA-mediated FAK inhibition restored enterocyte migration after TLR4 activation, demonstrating that the FAK-TLR4 association regulates intestinal healing. These findings demonstrate a critical role for TLR4 in the development of NEC through effects on enterocyte injury and repair, identify a novel TLR4-FAK association in regulating enterocyte migration, and suggest TLR4/FAK as a therapeutic target in this disease.  相似文献   

4.
5.
The intestinal epithelium undergoes a marked adaptive response following loss of functional small bowel surface area characterized by increased crypt cell proliferation and increased enterocyte migration from crypt to villus tip, resulting in villus hyperplasia and enhanced nutrient absorption. Hedgehog (Hh) signaling plays a critical role in regulating epithelial-mesenchymal interactions during morphogenesis of the embryonic intestine. Our previous studies showed that blocking Hh signaling in neonatal mice results in increased small intestinal epithelial crypt cell proliferation and altered enterocyte fat absorption and morphology. Hh family members are also expressed in the adult intestine, but their role in the mature small bowel is unclear. With the use of a model of intestinal adaptation following partial small bowel resection, the role of Hh signaling in the adult gut was examined by determining the effects of blocking Hh signaling on the regenerative response following loss of functional surface area. Hh-inactivating monoclonal antibodies or control antibodies were administered to mice that sustained a 50% intestinal resection. mRNA analyses of the preoperative ileum by quantitative real-time PCR revealed that Indian hedgehog was the most abundant Hh family member. The Hh receptor Patched was more abundant than Patched 2. Analyses of downstream targets of Hh signaling demonstrated that Gli3 was twofold more abundant than Gli1 and Gli2 and that bone morphogenetic protein (BMP)2 was most highly expressed compared with BMP1, -4, and -7. Following intestinal resection, the expression of Hh, Patched, Gli, and most BMP genes was markedly downregulated in the remnant ileum, and, in anti-Hh antibody-treated mice, expression of Patched 2 and Gli 1 was further suppressed. In Hh antibody-treated mice following resection, the enterocyte migration rate from crypt to villus tip was increased, and by 2 wk postoperation, apoptosis was increased in the adaptive gut. However, crypt cell proliferation, villus height, and crypt depth were not augmented. These data indicate that Hh signaling plays a role in adult gut epithelial homeostasis by regulating epithelial cell migration from crypt to villus tip and by enhancing apoptosis.  相似文献   

6.
The important role played by the gut microbiota in host immunity is mediated, in part, through toll-like receptors (TLRs). We evaluated the postnatal changes in expression of TLR2 and TLR4 in the murine small intestine and assessed how expression is influenced by gut microbiota. The expression of TLR2 and TLR4 in the murine small intestine was highly dynamic during development. The changes were especially profound during the suckling period, with the maximal mRNA levels detected in the mid-suckling period. Immunohistochemical and flow-cytometric analyses indicated that the changes in TLR2 and TLR4 expression involve primarily epithelial cells. The germ-free mice showed minor changes in TLR2/TLR4 mRNA and TLR2 protein during the suckling period. This study demonstrated that the postnatal expression of TLR2 and TLR4 in small intestinal epithelial cells is dynamic and depends on the presence of commensal intestinal microbiota.  相似文献   

7.
Over the past decade, emerging evidence has linked alterations in the gut microbial composition to a wide range of diseases including obesity, type 2 diabetes, and cardiovascular disease. Toll-like receptors (TLRs) are the major mediators for the interactions between gut microbiota and host innate immune system, which is involved in the localization and structuring of host gut microbiota. A previous study found that TLR5 deficient mice (TLR5KO1) had altered gut microbial composition which led to the development of metabolic syndrome including hyperlipidemia, hypertension, insulin resistance and increased adiposity. In the current study, a second TLR5-deficient mouse model was studied (TLR5KO2). TLR5 deficient mice did not manifest metabolic abnormalities related to the metabolic syndrome compared with littermate controls maintained on normal chow or after feeding a high fat diet. Analysis of the gut microbial composition of littermate TLR5KO2 and wild type mice revealed no significant difference in the overall microbiota structure between genotypes. However, the TLR5KO2 microbiota was distinctly different from that previously reported for TLR5KO1 mice with metabolic syndrome. We conclude that an altered composition of the microbiota in a given environment can result in metabolic syndrome, but it is not a consequence of TLR5 deficiency per se.  相似文献   

8.
《Free radical research》2013,47(11):950-957
Abstract

The microbiota that occupies the mammalian intestine can modulate a range of physiological functions, including control over immune responses, epithelial barrier function, and cellular proliferation. While commensal prokaryotic organisms are well known to stimulate inflammatory signaling networks, less is known about control over homeostatic pathways. Recent work has shown that gut epithelia contacted by enteric commensal bacteria rapidly generate reactive oxygen species (ROS). While the induced production of ROS in professional phagocytes via stimulation of formyl peptide receptors (FPRs) and activation of NADPH oxidase 2 (Nox2) is a well-studied process, ROS are also similarly elicited in other cell types, including intestinal epithelia, in response to microbial signals via FPRs and the epithelial NADPH oxidase 1 (Nox1). ROS generated by Nox enzymes have been shown to function as critical second messengers in multiple signal transduction pathways via the rapid and transient oxidative inactivation of a distinct class of sensor proteins bearing oxidant-sensitive thiol groups. These redox-sensitive proteins include tyrosine phosphatases that serve as regulators of MAP kinase pathways, focal adhesion kinase, as well as components involved in NF-κB activation. As microbe-elicited ROS has been shown to stimulate cellular proliferation and motility, and to modulate innate immune signaling, we hypothesize that many of the established effects of the normal microbiota on intestinal physiology may be at least partially mediated by this ROS-dependent mechanism.  相似文献   

9.
The most important trigger for immune system development is the exposure to microbial components immediately after birth. Moreover, targeted manipulation of the microbiota can be used to change host susceptibility to immune-mediated diseases. Our aim was to analyze how differences in early gut colonization patterns change the composition of the resident microbiota and future immune system reactivity. Germ-free (GF) mice were either inoculated by single oral gavage of caecal content or let colonized by co-housing with specific pathogen-free (SPF) mice at different time points in the postnatal period. The microbiota composition was analyzed by denaturing gradient gel electrophoresis for 16S rRNA gene followed by principal component analysis. Furthermore, immune functions and cytokine concentrations were analyzed using flow cytometry, ELISA or multiplex bead assay. We found that a single oral inoculation of GF mice at three weeks of age permanently changed the gut microbiota composition, which was not possible to achieve at one week of age. Interestingly, the ex-GF mice inoculated at three weeks of age were also the only mice with an increased pro-inflammatory immune response. In contrast, the composition of the gut microbiota of ex-GF mice that were co-housed with SPF mice at different time points was similar to the gut microbiota in the barrier maintained SPF mice. The existence of a short GF postnatal period permanently changed levels of systemic regulatory T cells, NK and NKT cells, and cytokine production. In conclusion, a time window exists that enables the artificial colonization of GF mice by a single oral dose of caecal content, which may modify the future immune phenotype of the host. Moreover, delayed microbial colonization of the gut causes permanent changes in the immune system.  相似文献   

10.
Necrotizing enterocolitis (NEC) is the leading cause of gastrointestinal-related mortality in premature infants, and it develops under conditions of exaggerated TLR4 signaling in the newborn intestinal epithelium. Because NEC does not develop spontaneously, despite the presence of seemingly tonic stimulation of intestinal TLR4, we hypothesized that mechanisms must exist to constrain TLR4 signaling that become diminished during NEC pathogenesis and focused on the intracellular stress response protein and chaperone heat shock protein-70 (Hsp70). We demonstrate that the induction of intracellular Hsp70 in enterocytes dramatically reduced TLR4 signaling, as assessed by LPS-induced NF-κB translocation, cytokine expression, and apoptosis. These findings were confirmed in vivo, using mice that either globally lacked Hsp70 or overexpressed Hsp70 within the intestinal epithelium. TLR4 activation itself significantly increased Hsp70 expression in enterocytes, which provided a mechanism of autoinhibition of TLR4 signaling in enterocytes. In seeking to define the mechanisms involved, intracellular Hsp70-mediated inhibition of TLR4 signaling required both its substrate-binding EEVD domain and association with the cochaperone CHIP, resulting in ubiquitination and proteasomal degradation of TLR4. The expression of Hsp70 in the intestinal epithelium was significantly decreased in murine and human NEC compared with healthy controls, suggesting that loss of Hsp70 protection from TLR4 could lead to NEC. In support of this, intestinal Hsp70 overexpression in mice and pharmacologic upregulation of Hsp70 reversed TLR4-induced cytokines and enterocyte apoptosis, as well as prevented and treated experimental NEC. Thus, a novel TLR4 regulatory pathway exists within the newborn gut involving Hsp70 that may be pharmacologically activated to limit NEC severity.  相似文献   

11.
Inflammatory bowel disease (IBD) is a disorder of chronic inflammation with increased susceptibility to colorectal cancer. The etiology of IBD is unclear but thought to result from a dysregulated adaptive and innate immune response to microbial products in a genetically susceptible host. Toll-like receptor (TLR) signaling induced by intestinal commensal bacteria plays a crucial role in maintaining intestinal homeostasis, innate immunity and the enhancement of intestinal epithelial cell (IEC) integrity. However, the role of TLR2 in the development of colorectal cancer has not been studied. We utilized the AOM-DSS model for colitis-associated colorectal cancer (CAC) in wild type (WT) and TLR2(-/-) mice. Colons harvested from WT and TLR2(-/-) mice were used for histopathology, immunohistochemistry, immunofluorescence and cytokine analysis. Mice deficient in TLR2 developed significantly more and larger colorectal tumors than their WT controls. We provide evidence that colonic epithelium of TLR2(-/-) mice have altered immune responses and dysregulated proliferation under steady-state conditions and during colitis, which lead to inflammatory growth signals and predisposition to accelerated neoplastic growth. At the earliest time-points assessed, TLR2(-/-) colons exhibited a significant increase in aberrant crypt foci (ACF), resulting in tumors that developed earlier and grew larger. In addition, the intestinal microenvironment revealed significantly higher levels of IL-6 and IL-17A concomitant with increased phospho-STAT3 within ACF. These observations indicate that in colitis, TLR2 plays a protective role against the development of CAC.  相似文献   

12.
Lipopolysaccharides (LPSs) released by gut microbiota are correlated with the pathophysiology of osteoarthritis (OA). Exercise remodels the composition of gut microbiota. The present study investigated the hypothesis that wheel-running exercise prevents knee OA induced by high-fat diet (HFD) via reducing LPS from intestinal microorganisms. Male C57BL/6 J mice were treated with sedentary or wheel-running exercise, standard diet (13.5% kcal) or HFD (60% kcal), berberine or not according to their grouping. Knee OA severity, blood and synovial fluid LPS, cecal microbiota, and TLR4 and MMP-13 expression levels were determined. Our findings reveal that HFD treatment decreased gut microbial diversity. Increase in endotoxin-producing bacteria, decrease in gut barrier-protecting bacteria, high LPS levels in the blood and synovial fluid, high TLR4 and MMP-13 expression levels, and severe cartilage degeneration were observed. By contrast, voluntary wheel running caused high gut microbial diversity. The gut microbiota were reshaped, LPS levels in the blood and synovial fluid and TLR4 and MMP-13 expression levels were low, and cartilage degeneration was ameliorated. Berberine treatment reduced LPS levels in the samples, but decreased the diversity of intestinal flora with similar changes to that caused by HFD. In conclusion, unlike taking drugs, exercising can remodel gut microbial ecosystems, reduce the circulating levels of LPS, and thereby contribute to the relief of chronic inflammation and OA. Our findings showed that moderate exercise is a potential therapeutic approach for preventing and treating obesity-related OA.  相似文献   

13.
14.
Increased neutrophil extracellular traps (NETs) formation has been found to be associated with intestinal inflammation, and it has been reported that NETs may drive the progression of gut dysregulation in sepsis. However, the biological function and regulation of NETs in sepsis-induced intestinal barrier dysfunction are not yet fully understood. First, we found that both circulating biomarkers of NETs and local NETs infiltration in the intestine were significantly increased and had positive correlations with markers of enterocyte injury in abdominal sepsis patients. Moreover, the levels of local citrullinated histone 3 (Cit H3) expression were associated with the levels of BIP expression. To further confirm the role of NETs in sepsis-induced intestinal injury, we compared peptidylarginine deiminase 4 (PAD4)-deficient mice and wild-type (WT) mice in a lethal septic shock model. In WT mice, the Cit H3-DNA complex was markedly increased, and elevated intestinal inflammation and endoplasmic reticulum (ER) stress activation were also found. Furthermore, PAD4 deficiency alleviated intestinal barrier disruption and decreased ER stress activation. Notably, NETs treatment induced intestinal epithelial monolayer barrier disruption and ER stress activation in a dose-dependent manner in vitro, and ER stress inhibition markedly attenuated intestinal apoptosis and tight junction injury. Finally, TLR9 antagonist administration significantly abrogated NETs-induced intestinal epithelial cell death through ER stress inhibition. Our results indicated that NETs could contribute to sepsis-induced intestinal barrier dysfunction by promoting inflammation and apoptosis. Suppression of the TLR9–ER stress signaling pathway can ameliorate NETs-induced intestinal epithelial cell death.Subject terms: Mucosal immunology, Intestinal diseases, Sepsis  相似文献   

15.
Decreased Toll-like receptor 2 (TLR2) expression has been reported in patients with chronic obstructive pulmonary disease and in a murine asthma model, which may predispose the hosts to bacterial infections, leading to disease exacerbations. Since airway epithelial cells serve as the first line of respiratory mucosal defense, the present study aimed to reveal the role of airway epithelial TLR2 signaling to lung bacterial [i.e., Mycoplasma pneumoniae (Mp)] clearance. In vivo TLR2 gene transfer via intranasal inoculation of adenoviral vector was performed to reconstitute TLR2 expression in airway epithelium of TLR2(-/-) BALB/c mice, with or without ensuing Mp infection. TLR2 and lactotransferrin (LTF) expression in airway epithelial cells and lung Mp load were assessed. Adenovirus-mediated TLR2 gene transfer to airway epithelial cells of TLR2(-/-) mice reconstituted 30-40% TLR2 expression compared with TLR2(+/+) cells. Such airway epithelial TLR2 reconstitution in TLR2(-/-) mice significantly reduced lung Mp load (an appropriate 45% reduction), coupled with elevated LTF expression. LTF expression in mice was shown to be mainly dependent on TLR2 signaling in response to Mp infection. Exogenous human LTF protein dose-dependently decreased lung bacterial load in Mp-infected TLR2(-/-) mice. In addition, human LTF protein directly dose-dependently decreased Mp levels in vitro. These data indicate that reconstitution of airway epithelial TLR2 signaling in TLR2(-/-) mice significantly restores lung defense against bacteria (e.g., Mp) via increased lung antimicrobial protein LTF production. Our findings may offer a deliverable approach to attenuate bacterial infections in airways of asthma or chronic obstructive pulmonary disease patients with impaired TLR2 function.  相似文献   

16.
Many colonic mucosal genes that are highly regulated by microbial signals are differentially expressed along the rostral-caudal axis. This would suggest that differences in regional microbiota exist, particularly mucosa-associated microbes that are less likely to be transient. We therefore explored this possibility by examining the bacterial populations associated with the normal proximal and distal colonic mucosa in context of host Toll-like receptors (TLR) expression in C57BL/6J mice housed in specific pathogen-free (SPF) and germ-free (GF) environments. 16S rRNA gene-based terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis revealed significant differences in the community structure and diversity of the mucosa-associated microbiota located in the distal colon compared to proximal colon and stool, the latter two clustering closely. Differential expression of colonic TLR2 and TLR4 along the proximal-distal axis was also found in SPF mice, but not in GF mice, suggesting that enteric microbes are essential in maintaining the regional expression of these TLRs. TLR2 is more highly expressed in proximal colon and decreases in a gradient to distal while TLR4 expression is highest in distal colon and a gradient of decreased expression to proximal colon is observed. After transfaunation in GF mice, both regional colonization of mucosa-associated microbes and expression of TLRs in the mouse colon were reestablished. In addition, exposure of the distal colon to cecal (proximal) microbiota induced TLR2 expression. These results demonstrate that regional colonic mucosa-associated microbiota determine the region-specific expression of TLR2 and TLR4. Conversely, region-specific host assembly rules are essential in determining the structure and function of mucosa-associated microbial populations. We believe this type of host-microbial mutualism is pivotal to the maintenance of intestinal and immune homeostasis.  相似文献   

17.
Epidermal growth factor (EGF) and tumor necrosis factor-α (TNF-α) signaling are critical for effective proliferative and apoptotic actions; however, little is known about the codependency of these signaling pathways in the intestinal epithelium. Because total parenteral nutrition (TPN) is associated with loss of intestinal epithelial cell (IEC) proliferation and increased apoptosis, we utilized a mouse model to explore these transactivation pathways in small bowel epithelium. Mice underwent intravenous cannulation and were given enteral nutrition or TPN for 7 days. Outcomes included IEC proliferation, apoptosis, and survival. To address transactivation or dependence of EGF and TNF on IEC physiology, TNF-α receptor knockout (KO) mice, TNFR1-KO, R2-KO, or R1R2-double KO, were used. Exogenous EGF and pharmacological blockade of ErbB1 were performed in other groups to examine the relevance of the ErB1 pathway. TPN increased IEC TNFR1 and decreased EGF and ErbB1 abundance. Loss of IEC proliferation was prevented by exogenous EGF or blockade of TNFR1. However, EGF action was prevented without effective TNFR2 signaling. Also, blockade of TNFR1 could not prevent loss of IEC proliferation without effective ErbB1 signaling. TPN increased IEC apoptosis and was due to increased TNFR1 signaling. Exogenous EGF or blockade of TNFR1 could prevent increased apoptosis, and both pathways were dependent on effective ErbB1 signaling. Exogenous EGF prevented increased apoptosis in mice lacking TNFR2 signaling. TPN mice had significantly decreased survival vs. controls, and this was associated with the TNFR1 signaling pathway. We concluded that these findings identify critical mechanisms that contribute to TPN-associated mucosal atrophy via altered TNF-α/EGF signaling. It emphasizes the importance of both TNFR1 and TNFR2 pathways, as well as the strong interdependence on an intact EGF/ErbB1 pathway.  相似文献   

18.
Colitis results from breakdown of homeostasis between intestinal microbiota and the mucosal immune system, with both environmental and genetic influencing factors. Flagellin receptor TLR5-deficient mice (T5KO) display elevated intestinal proinflammatory gene expression and colitis with incomplete penetrance, providing a genetically sensitized system to study the contribution of microbiota to driving colitis. Both colitic and noncolitic T5KO exhibited transiently unstable microbiotas, with lasting differences in colitic T5KO, while their noncolitic siblings stabilized their microbiotas to resemble wild-type mice. Transient high levels of proteobacteria, especially enterobacteria species including E.?coli, observed in close proximity to the gut epithelium were a striking feature of colitic microbiota. A Crohn's disease-associated E.?coli strain induced chronic colitis in T5KO, which persisted well after the exogenously introduced bacterial species had been eliminated. Thus, an innate immune deficiency can result in unstable gut microbiota associated with low-grade inflammation, and harboring proteobacteria can drive and/or instigate chronic colitis.  相似文献   

19.
Toll-like receptors (TLRs) associate with adaptor molecules (MyD88, Mal/TIRAP, TRAM, and TRIF) to mediate signaling of host-microbial interaction. For instance, TLR4 utilizes the combination of both Mal/TIRAP-MyD88 (MyD88-dependent pathway) and TRAM-TRIF (MyD88-independent pathway). However, TLR5, the specific receptor for flagellin, is known to utilize only MyD88 to elicit inflammatory responses, and an involvement of other adaptor molecules has not been suggested in TLR5-dependent signaling. Here, we found that TRIF is involved in mediating TLR5-induced nuclear factor κB (NFκB) and mitogen-activated protein kinases (MAPKs), specifically JNK1/2 and ERK1/2, activation in intestinal epithelial cells. TLR5 activation by flagellin permits the physical interaction between TLR5 and TRIF in human colonic epithelial cells (NCM460), whereas TLR5 does not interact with TRAM upon flagellin stimulation. Both primary intestinal epithelial cells from TRIF-KO mice and TRIF-silenced NCM460 cells significantly reduced flagellin-induced NFκB (p105 and p65), JNK1/2, and ERK1/2 activation compared with control cells. However, p38 activation by flagellin was preserved in these TRIF-deficient cells. TRIF-KO intestinal epithelial cells exhibited substantially reduced inflammatory cytokine (keratinocyte-derived cytokine, macrophage inflammatory protein 3α, and IL-6) expression upon flagellin, whereas control cells from TRIF-WT mice showed robust cytokine expression by flagellin. Compare with TRIF-WT mice, TRIF-KO mice were resistant to in vivo intestinal inflammatory responses: flagellin-mediated exacerbation of colonic inflammation and dextran sulfate sodium-induced experimental colitis. We conclude that in addition to MyD88, TRIF mediates TLR5-dependent responses and, thereby regulates inflammatory responses elicited by flagellin/TLR5 engagement. Our findings suggest an important role of TRIF in regulating host-microbial communication via TLR5 in the gut epithelium.  相似文献   

20.
Microorganisms that colonize the gastrointestinal tract, collectively known as the gut microbiota, are known to produce small molecules and metabolites that significantly contribute to host intestinal development, functions, and homeostasis. Emerging insights from microbiome research reveal that gut microbiota‐derived signals and molecules influence another key player maintaining intestinal homeostasis—the intestinal stem cell niche, which regulates epithelial self‐renewal. In this review, the literature on gut microbiota‐host crosstalk is surveyed, highlighting the effects of gut microbial metabolites on intestinal stem cells. The production of various classes of metabolites, their actions on intestinal stem cells are discussed and, finally, how the production and function of metabolites are modulated by aging and dietary intake is commented upon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号