共查询到20条相似文献,搜索用时 0 毫秒
1.
Maryam Mehravar Abolfazl Shirazi Mahboobeh Nazari Mehdi Banan 《Developmental biology》2019,445(2):156-162
The CRISPR/Cas9 system is a rapid, simple, and often extremely efficient gene editing method. This method has been used in a variety of organisms and cell types over the past several years. However, using this technology for generating gene-edited animals involves a number of obstacles. One such obstacle is mosaicism, which is common in founder animals. This is especially the case when the CRISPR/Cas9 system is used in embryos. Here we review the pros and cons of mosaic mutations of gene-edited animals caused by using the CRISPR/Cas9 system in embryos. Furthermore, we will discuss the mechanisms underlying mosaic mutations resulting from the CRISPR/Cas9 system, as well as the possible strategies for reducing mosaicism. By developing ways to overcome mosaic mutations when using CRISPR/Cas9, genotyping for germline gene disruptions should become more reliable. This achievement will pave the way for using the CRISPR technology in the research and clinical applications where mosaicism is an issue. 相似文献
2.
Sawako Yoshina Yuji Suehiro Eriko Kage-Nakadai Shohei Mitani 《Biochemistry and Biophysics Reports》2016
We established a method to generate integration from extrachromosomal arrays with the CRISPR/Cas9 system. Multi-copy transgenes were integrated into the defined loci of chromosomes by this method, while a multi-copy transgene is integrated into random loci by previous methods, such as UV- and gamma-irradiation. The effects of a combination of sgRNAs, which define the cleavage sites in extrachromosomes and chromosomes, and the copy number of potential cleavable sequences were examined. The relative copy number of cleavable sequences in extrachromosomes affects the frequency of fertile F1 transgenic animals. The expression levels of the reporter gene were almost proportional to the copy numbers of the integrated sequences at the same integration site. The technique is applicable to the transgenic strains abundantly stored and shared among the C. elegans community, particularly when researchers use sgRNAs against common plasmid sequences such as β-lactamase. 相似文献
3.
目的:构建Surrogate报告载体,并利用Surrogate报告载体提高CRISPR/Cas9对HEK293T细胞TMEM215基因打靶效率。方法:构建针对人TMEM215的CRISPR/Cas9表达载体及相应Surrogate报告载体,两者共转HEK293T细胞,通过流式分析、T7EI检测、TA克隆测序等明确Surrogate报告载体对不同sgRNA打靶效率的检测及对基因修饰细胞的筛选富集作用。结果:流式分析结果表明,Surrogate报告载体成功检测出不同sgRNA的打靶效率,并筛选出高效率sgRNA;T7EI检测及TA克隆测序显示,外加嘌呤霉素抗性筛选时,Surrogate报告载体可有效富集基因修饰细胞。结论:成功构建Surrogate报告载体,并利用Surrogate报告载体提高CRISPR/Cas9对HEK293T细胞TMEM215基因的打靶效率。 相似文献
4.
The clustered regularly interspaced short palindromic repeats (CRISPR) system is a state-of-the-art tool for versatile genome editing that has advanced basic research dramatically, with great potential for clinic applications. The system consists of two key molecules: a CRISPR-associated (Cas) effector nuclease and a single guide RNA. The simplicity of the system has enabled the development of a wide spectrum of derivative methods. Almost any laboratory can utilize these methods, although new users may initially be confused when faced with the potentially overwhelming abundance of choices. Cas nucleases and their engineering have been systematically reviewed previously. In the present review, we discuss single guide RNA engineering and design strategies that facilitate more efficient, more specific and safer gene editing. 相似文献
5.
目的运用CRISR/Cas9技术敲除小鼠基因组中Bmp9基因片段,构建Bmp9基因敲除小鼠。方法根据Bmp9基因的外显子序列,设计一段sgRNA并合成。sgRNA体外转录后和Cas9mRNA混合后显微注射受精卵细胞,注射后的受精卵细胞移植至受体动物获得子代小鼠。提取子代小鼠基因组DNA测序鉴定其基因型。基因型鉴定正确的小鼠与野生型交配后筛选纯合子小鼠。同时取纯合子小鼠心脏、肝、脾、肺、肾,匀浆后提取总RNA和总蛋白,通过qPCR、WB和免疫组化检测BMP9在各组织中的表达。结果设计并合成20bp的sgRNA并进行体外转录,显微注射并回植后得到基因突变小鼠,连续交配后得F2代纯合子。测序结果显示,突变小鼠存在两种基因型,一种为5bp缺失突变,另一种为13bp缺失并伴有1bp插入突变。与野生型C57BL/6相比,qPCR、WB和免疫组化结果均表明基因敲除小鼠肝中BMP9表达显著降低。结论利用CRISPR/Cas9技术成功构建出了BMP9基因敲除小鼠。 相似文献
6.
Tongchai Payungwoung Naoaki Shinzawa Akina Hino Tubasa Nishi Yuho Murata Masao Yuda Shiroh Iwanaga 《Parasitology international》2018,67(5):605-608
The CRISPR/Cas9 nuclease system is a powerful method to genetically modify the human malarial parasite, Plasmodium falciparum. Currently, this method is carried out by co-transfection with two plasmids, one containing the Cas9 nuclease gene, and another encoding the sgRNA and the donor template DNA. However, the efficiency of modification is currently low owing to the low frequency of these plasmids in the parasites. To improve the CRISPR/Cas9 nuclease system for P. falciparum, we developed a novel method using the transgenic parasite, PfCAS9, which stably expresses the Cas9 nuclease using the centromere plasmid. To examine the efficiency of genetic modification using the PfCAS9 parasite, we performed site-directed mutagenesis of kelch13 gene, which is considered to be involved in artemisinin resistance. Our results demonstrated that the targeted mutation could be introduced with almost 100% efficiency when the transfected PfCAS9 parasites were treated with two drugs to maintain both the centromere plasmid containing the Cas9 nuclease and the plasmid having the sgRNA. Therefore, the PfCAS9 parasite is a useful parasite line for the genetic modification of P. falciparum. 相似文献
7.
Two major hormones, juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulate insect growth and development according to their precisely coordinated titres, which are controlled by both biosynthesis and degradation pathways. Juvenile hormone esterase (JHE) is the primary JH-specific degradation enzyme that plays a key role in regulating JH titers, along with JH epoxide hydrolase (JHEH) and JH diol kinase (JHDK). In the current study, a loss-of-function analysis of JHE in the silkworm, Bombyx mori, was performed by targeted gene disruption using the transgenic CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/RNA-guided Cas9 nucleases) system. Depletion of B. mori JHE (BmJHE) resulted in the extension of larval stages, especially the penultimate and ultimate larval stages, without deleterious effects to silkworm physiology. The expression of JHEH and JHDK was upregulated in mutant animals, indicating the existence of complementary routes in the JH metabolism pathway in which inactivation of one enzyme will activate other enzymes. RNA-Seq analysis of mutant animals revealed that genes involved in protein processing in the endoplasmic reticulum and in amino acid metabolism were affected by BmJHE depletion. Depletion of JHE and subsequent delayed JH metabolism activated genes in the TOR pathway, which are ultimately responsible for extending larval growth. The transgenic Cas9 system used in the current study provides a promising approach for analysing the actions of JH, especially in nondrosophilid insects. Furthermore, prolonging larval stages produced larger larvae and cocoons, which is greatly beneficial to silk production. 相似文献
8.
9.
10.
11.
12.
《生物技术通报》2017,33(8)
旨在利用CRISPR/Cas9对细胞添加不同的生物条形码(Barcode);实现对细胞进行不同的标记。将生物条形码序列、条件诱导性Cas9序列及相应的sgRNA序列通过PB酶整合到细胞中;诱导Cas9表达之后对生物条形码序列测序分析细胞的标记情况。所设计的生物条形码含有6个相互重叠的sgRNA 识别位点;这种设计可以使条形码序列只会被Cas9切割一次。结果显示;所设计的生物条形码序列在N2a细胞中经Dox诱导之后能够高效地被Cas9切割;所挑的9个克隆中;生物条形码序列有9种不同的基因型。含有受loxp-stop-loxp 调控表达Cas9的序列及生物条形码序列的E14胚胎干细胞经Cre诱导之后;挑单克隆测序分析显示;21株细胞中仅2株单克隆细胞生物条形码保持原来的基因型;另外19株有18种不同的基因型。成功建立了可进行时空调控地在细胞内高效添加特异且相对稳定的生物条形码标记的方法。 相似文献
13.
14.
Recently established, custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system provide attractive genome editing tools. Targeted gene mutagenesis using the CRISPR/Cas9 system has been achieved in several orders of insects. However, outside of studies on Drosophila melanogaster and the lepidopteron model insect Bombyx mori, little success has been reported, which is largely due to a lack of effective genetic manipulation tools that can be used in other insect orders. To create a simple and effective method of gene knockout analysis, especially for dissecting gene functioning during insect embryogenesis, we performed a functional analysis of the Bombyx Wnt1 (BmWnt1) gene using Cas9/sgRNA-mediated gene mutagenesis. The Wnt1 gene is required for embryonic patterning in various organisms, and its crucial roles during embryogenesis have been demonstrated in several insect orders. Direct injection of Cas9 mRNA and BmWnt1-specific sgRNA into Bombyx embryos induced a typical Wnt-deficient phenotype: injected embryos could not hatch and exhibited severe defects in body segmentation and pigmentation in a dose-dependent manner. Quantitative real-time PCR (qRT-PCR) analysis revealed that Hox genes were down-regulated after BmWnt1 depletion. Furthermore, large deletion, up to 18 Kb, ware generated. The current study demonstrates that using the CRISPR/Cas9 system is a promising approach to achieve targeted gene mutagenesis during insect embryogenesis. 相似文献
15.
CRISPR(clustered regularly interspaced short palindromic repeats)/Cas(CRISPR-associated)系统是近年来发展起来的新型的基因编辑技术,在生物医学领域得到广泛应用。CRISPR/Cas9系统需要在gRNA存在的条件下通过Cas9蛋白实现对基因组的定点编辑,通常情况下以慢病毒感染或质粒转染等方式提供Cas9和gRNA。但是,这些方式容易引起免疫反应及基因片段不可控插入,存在一定的风险,限制了CRISPR/Cas9技术在机体的应用。近年来发展起来的基于体外组装的核糖核蛋白(ribonucleoprotein, RNP)转导入胞的策略由于快捷安全、编辑的脱靶率低等优势引起广泛关注。对Cas9 RNP的转导方式及其应用进行了总结,并就其目前存在的问题进行探讨,以期为CRISPR/Cas9技术的进一步发展提供依据,为拓展其应用奠定基础。 相似文献
16.
《遗传学报》2020,47(5):263-272
Male sterile genes and mutants are valuable resources in hybrid seed production for monoclinous crops.High genetic redundancy due to allohexaploidy makes it difficult to obtain the nuclear recessive male sterile mutants through spontaneous mutation or chemical or physical mutagenesis methods in wheat.The emerging effective genome editing tool,CRISPR/Cas9 system,makes it possible to achieve simultaneous mutagenesis in multiple homoeoalleles.To improve the genome modification efficiency of the CRISPR/Cas9 system in wheat,we compared four different RNA polymerase(Pol) Ⅲ promoters(TaU3 p,TaU6 p,OsU3 p,and OsU6 p) and three types of sgRNA scaffold in the protoplast system.We show that the TaU3 promoter-driven optimized sgRNA scaffold was most effective.The optimized CRISPR/Cas9 system was used to edit three TaNP1 homoeoalleles,whose orthologs,OsNP1 in rice and ZmIPE1 in maize,encode a putative glucose-methanol-choline oxidoreductase and are required for male sterility.Triple homozygous mutations in TaNP1 genes result in complete male sterility.We further demonstrated that anyone wild-type copy of the three TaNP1 genes is sufficient for maintenance of male fertility.Taken together,this study provides an optimized CRISPR/Cas9 vector for wheat genome editing and a complete male sterile mutant for development of a commercially viable hybrid wheat seed production system. 相似文献
17.
《遗传学报》2020,47(5):273-280
Although Clustered Regularly Interspaced Short Palindromic Repeats(CRISPR)/CRISPR-associated 9(Cas9) system has been widely used for basic research in model plants,its application for applied breeding in crops has faced strong regulatory obstacles,due mainly to a poor understanding of the authentic output of this system,particularly in higher generations.In this study,different from any previous studies,we investigated in detail the molecular characteristics and production performance of CRISPR/Cas9-generated SD1(semi-dwarf 1) mutants from T_2 to T_4 generations,of which the selection of T_1 and T_2 was done only by visual phenotyping for semidwarf plants.Our data revealed not only on-and off-target mutations with small or lager indels but also exogenous elements in T_2 plants.All indel mutants passed stably to T_3 or T_4 without additional modifications independent on the presence of Cas9,while some lines displayed unexpected hereditary patterns of Cas9 or some exogenous elements.In addition,effects of various SD1 alleles on rice height and yield differed depending on genetic backgrounds.Taken together,our data showed that the CRISPR/Cas9 system is effective in producing homozygous mutants for functional analysis,but it may be not as precise as expected in rice,and that early and accurate molecular characterization and screening must be carried out for generations before transitioning of the CRISPR/Cas9 system from laboratory to field. 相似文献
18.
19.
20.
CRISPR(clustered regularly interspaced short palindromic repeats)/Cas9(CRISPR-associated proteins)作为一种新型基因组编辑技术,为解释疾病的发生机制和治疗疾病提供了新方法。来自Ⅱ型原核CRISPR系统的CRISPR/Cas9能够通过单链向导RNA(single guide RNA, sgRNA)将Cas9核酸酶靶定到特定的基因组序列发挥作用。已经被成功用来进行基因编辑构建疾病模型,以进行相关领域的功能研究和疾病的治疗。CRISPR/Cas9技术正在迅速的应用于生物医学研究的各个领域,包括心血管领域,它促进了人们对电生理、心肌病、心律失常以及其他心血管疾病的更多了解,已经创建了靶向很多基因的细胞和动物模型,为新一类疗法打开了大门。本综述介绍了CRISPR/Cas9的作用原理、优点和局限性,以及在心血管疾病中的应用进展。 相似文献