首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent theoretical developments had laid down the proper mathematical means to understand how the structural complexity of search patterns may improve foraging efficiency. Under information-deprived scenarios and specific landscape configurations, Lévy walks and flights are known to lead to high search efficiencies. Based on a one-dimensional comparative analysis we show a mechanism by which, at random, a searcher can optimize the encounter with close and distant targets. The mechanism consists of combining an optimal diffusivity (optimally enhanced diffusion) with a minimal diffusion constant. In such a way the search dynamics adequately balances the tension between finding close and distant targets, while, at the same time, shifts the optimal balance towards relatively larger close-to-distant target encounter ratios. We find that introducing a multiscale set of reorientations ensures both a thorough local space exploration without oversampling and a fast spreading dynamics at the large scale. Lévy reorientation patterns account for these properties but other reorientation strategies providing similar statistical signatures can mimic or achieve comparable efficiencies. Hence, the present work unveils general mechanisms underlying efficient random search, beyond the Lévy model. Our results suggest that animals could tune key statistical movement properties (e.g. enhanced diffusivity, minimal diffusion constant) to cope with the very general problem of balancing out intensive and extensive random searching. We believe that theoretical developments to mechanistically understand stochastic search strategies, such as the one here proposed, are crucial to develop an empirically verifiable and comprehensive animal foraging theory.  相似文献   

2.
Networks are ubiquitous in natural, technological and social systems. They are of increasing relevance for improved understanding and control of infectious diseases of plants, animals and humans, given the interconnectedness of today's world. Recent modelling work on disease development in complex networks shows: the relative rapidity of pathogen spread in scale-free compared with random networks, unless there is high local clustering; the theoretical absence of an epidemic threshold in scale-free networks of infinite size, which implies that diseases with low infection rates can spread in them, but the emergence of a threshold when realistic features are added to networks (e.g. finite size, household structure or deactivation of links); and the influence on epidemic dynamics of asymmetrical interactions. Models suggest that control of pathogens spreading in scale-free networks should focus on highly connected individuals rather than on mass random immunization. A growing number of empirical applications of network theory in human medicine and animal disease ecology confirm the potential of the approach, and suggest that network thinking could also benefit plant epidemiology and forest pathology, particularly in human-modified pathosystems linked by commercial transport of plant and disease propagules. Potential consequences for the study and management of plant and tree diseases are discussed.  相似文献   

3.
We adopt a susceptible-infected-susceptible (SIS) model on a Barabási and Albert (BA) network to investigate the effects of different vaccine subsidization policies. The goal is to control the prevalence of the disease given a limited supply and voluntary uptake of vaccines. The results show a uniform subsidization policy is always harmful and increases the prevalence of the disease, because the lower degree individuals’ demand for vaccine crowds out the higher degree individuals’ demand. In the absence of an effective uniform policy, we explore a targeted subsidization policy which relies on a proxy variable instead of individuals’ connectivity. Findings show a poor proxy-based targeted program can still increase the disease prevalence and become a policy trap. The results are robust to general scale-free networks.  相似文献   

4.
Genome-wide association studies (GWAS) have successfully identified several risk loci for Alzheimer''s disease (AD). Nonetheless, these loci do not explain the entire susceptibility of the disease, suggesting that other genetic contributions remain to be identified. Here, we performed a meta-analysis combining data of 4,569 individuals (2,540 cases and 2,029 healthy controls) derived from three publicly available GWAS in AD and replicated a broad genomic region (>248,000 bp) associated with the disease near the APOE/TOMM40 locus in chromosome 19. To detect minor effect size contributions that could help to explain the remaining genetic risk, we conducted network-based pathway analyses either by extracting gene-wise p-values (GW), defined as the single strongest association signal within a gene, or calculated a more stringent gene-based association p-value using the extended Simes (GATES) procedure. Comparison of these strategies revealed that ontological sub-networks (SNs) involved in glutamate signaling were significantly overrepresented in AD (p<2.7×10−11, p<1.9×10−11; GW and GATES, respectively). Notably, glutamate signaling SNs were also found to be significantly overrepresented (p<5.1×10−8) in the Alzheimer''s disease Neuroimaging Initiative (ADNI) study, which was used as a targeted replication sample. Interestingly, components of the glutamate signaling SNs are coordinately expressed in disease-related tissues, which are tightly related to known pathological hallmarks of AD. Our findings suggest that genetic variation within glutamate signaling contributes to the remaining genetic risk of AD and support the notion that functional biological networks should be targeted in future therapies aimed to prevent or treat this devastating neurological disorder.  相似文献   

5.
Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons.  相似文献   

6.
Traveling fronts and stationary localized patterns in bistable reaction-diffusion systems have been broadly studied for classical continuous media and regular lattices. Analogs of such non-equilibrium patterns are also possible in networks. Here, we consider traveling and stationary patterns in bistable one-component systems on random Erdös-Rényi, scale-free and hierarchical tree networks. As revealed through numerical simulations, traveling fronts exist in network-organized systems. They represent waves of transition from one stable state into another, spreading over the entire network. The fronts can furthermore be pinned, thus forming stationary structures. While pinning of fronts has previously been considered for chains of diffusively coupled bistable elements, the network architecture brings about significant differences. An important role is played by the degree (the number of connections) of a node. For regular trees with a fixed branching factor, the pinning conditions are analytically determined. For large Erdös-Rényi and scale-free networks, the mean-field theory for stationary patterns is constructed.  相似文献   

7.
The study of processes evolving on networks has recently become a very popular research field, not only because of the rich mathematical theory that underpins it, but also because of its many possible applications, a number of them in the field of biology. Indeed, molecular signaling pathways, gene regulation, predator-prey interactions and the communication between neurons in the brain can be seen as examples of networks with complex dynamics. The properties of such dynamics depend largely on the topology of the underlying network graph. In this work, we want to answer the following question: Knowing network connectivity, what can be said about the level of third-order correlations that will characterize the network dynamics? We consider a linear point process as a model for pulse-coded, or spiking activity in a neuronal network. Using recent results from theory of such processes, we study third-order correlations between spike trains in such a system and explain which features of the network graph (i.e. which topological motifs) are responsible for their emergence. Comparing two different models of network topology—random networks of Erdős-Rényi type and networks with highly interconnected hubs—we find that, in random networks, the average measure of third-order correlations does not depend on the local connectivity properties, but rather on global parameters, such as the connection probability. This, however, ceases to be the case in networks with a geometric out-degree distribution, where topological specificities have a strong impact on average correlations.  相似文献   

8.
Dynamics and Control of Diseases in Networks with Community Structure   总被引:1,自引:0,他引:1  
The dynamics of infectious diseases spread via direct person-to-person transmission (such as influenza, smallpox, HIV/AIDS, etc.) depends on the underlying host contact network. Human contact networks exhibit strong community structure. Understanding how such community structure affects epidemics may provide insights for preventing the spread of disease between communities by changing the structure of the contact network through pharmaceutical or non-pharmaceutical interventions. We use empirical and simulated networks to investigate the spread of disease in networks with community structure. We find that community structure has a major impact on disease dynamics, and we show that in networks with strong community structure, immunization interventions targeted at individuals bridging communities are more effective than those simply targeting highly connected individuals. Because the structure of relevant contact networks is generally not known, and vaccine supply is often limited, there is great need for efficient vaccination algorithms that do not require full knowledge of the network. We developed an algorithm that acts only on locally available network information and is able to quickly identify targets for successful immunization intervention. The algorithm generally outperforms existing algorithms when vaccine supply is limited, particularly in networks with strong community structure. Understanding the spread of infectious diseases and designing optimal control strategies is a major goal of public health. Social networks show marked patterns of community structure, and our results, based on empirical and simulated data, demonstrate that community structure strongly affects disease dynamics. These results have implications for the design of control strategies.  相似文献   

9.

Background

PCR amplicon sequencing has been widely used as a targeted approach for both DNA and RNA sequence analysis. High multiplex PCR has further enabled the enrichment of hundreds of amplicons in one simple reaction. At the same time, the performance of PCR amplicon sequencing can be negatively affected by issues such as high duplicate reads, polymerase artifacts and PCR amplification bias. Recently researchers have made some good progress in addressing these shortcomings by incorporating molecular barcodes into PCR primer design. So far, most work has been demonstrated using one to a few pairs of primers, which limits the size of the region one can analyze.

Results

We developed a simple protocol, which enables the use of molecular barcodes in high multiplex PCR with hundreds of amplicons. Using this protocol and reference materials, we demonstrated the applications in accurate variant calling at very low fraction over a large region and in targeted RNA quantification. We also evaluated the protocol’s utility in profiling FFPE samples.

Conclusions

We demonstrated the successful implementation of molecular barcodes in high multiplex PCR, with multiplex scale many times higher than earlier work. We showed that the new protocol combines the benefits of both high multiplex PCR and molecular barcodes, i.e. the analysis of a very large region, low DNA input requirement, very good reproducibility and the ability to detect as low as 1 % mutations with minimal false positives (FP).

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1806-8) contains supplementary material, which is available to authorized users.  相似文献   

10.
Rapid and simple serologic tests that require only a small amount of blood without the euthanization of animals are valuable for microbial control in colonies of laboratory animals. In this study, we developed a multiplex immunochromatographic assay (ICA) for detection of antibodies to Sendai virus (also known as hemagglutinating virus of Japan), hantavirus, and sialodacryoadenitis virus, which are causative agents of major infectious diseases in rats. For this assay, an ICA strip was placed into a microtube containing 150 µl PBS and either 0.75 µl of rat serum or 1.5 µl of whole blood. Binding antibodies were visualized by using anti-rat IgG antibody-conjugated colloidal gold. Under these conditions, the multiplex ICA simultaneously and specifically detected antibodies to multiple antigens. Positive serum samples for each infectious disease were used to evaluate the sensitivity and specificity of the multiplex ICA. The sensitivities of the multiplex ICA for Sendai virus, hantavirus, and sialodacryoadenitis virus were 100%, 100%, and 81%, respectively. No nonspecific reactions were observed in any of the 52 positive sera against heterologous antigens. In addition, 10 samples of uninfected sera did not show any bands except for the control line. These observations indicate high specificity of the multiplex ICA. Moreover, the multiplex ICA could be applied to diluted blood. These results indicate that the multiplex ICA is appropriate for rapid and simple serological testing of laboratory rats.  相似文献   

11.

Background

The central molecule in the pathogenesis of Alzheimer’s disease (AD) is believed to be a small-sized polypeptide – beta amyloid (Aβ) which has an ability to assemble spontaneously into oligomers. Various studies concerning therapeutic and prophylactic approaches for AD are based on the immunotherapy using antibodies against Aβ. It has been suggested that either active immunization with Aβ or passive immunization with anti-Aβ antibodies might help to prevent or reduce the symptoms of the disease. However, knowledge on the mechanisms of Aβ-induced immune response is rather limited. Previous research on Aβ1-42 oligomers in rat brain cultures showed that the neurotoxicity of these oligomers considerably depends on their size. In the current study, we evaluated the dependence of immunogenicity of Aβ1-42 oligomers on the size of oligomeric particles and identified the immunodominant epitopes of the oligomers.

Results

Mice were immunized with various Aβ1-42 oligomers. The analysis of serum antibodies revealed that small Aβ1-42 oligomers (1–2 nm in size) are highly immunogenic. They induced predominantly IgG2b and IgG2a responses. In contrast, larger Aβ1-42 oligomers and monomers induced weaker IgG response in immunized mice. The monoclonal antibody against 1–2 nm Aβ1-42 oligomers was generated and used for antigenic characterization of Aβ1-42 oligomers. Epitope mapping of both monoclonal and polyclonal antibodies demonstrated that the main immunodominant region of the 1–2 nm Aβ1-42 oligomers is located at the amino-terminus (N-terminus) of the peptide, between amino acids 1 and 19.

Conclusions

Small Aβ1-42 oligomers of size 1–2 nm induce the strongest immune response in mice. The N-terminus of Aβ1-42 oligomers represents an immunodominant region which indicates its surface localization and accessibility to the B cells. The results of the current study may be important for further development of Aβ-based vaccination and immunotherapy strategies.  相似文献   

12.
To model the Fåhræus–Lindqvist effect, Haynes’ marginal zone theory is used, following previous works, i.e., a core layer of uniform red blood cells (RBCs) is assumed to be surrounded by an annular plasma layer in which no RBCs are present. A simplified trial-and-error solution procedure is provided to determine the size of the core region and the hematocrit level in that zone in addition to the apparent viscosity, given the (upstream) large vessel hematocrit level and the average hematocrit level in the (downstream) small vessel. To test the model, a set of experimental data is selected to provide not only apparent viscosity data but also the average hematocrit levels in small tubes of different diameters. The results are found to support Haynes’ marginal theory, with no fitting parameters used in the computations. Viscous dissipation is determined. The use of the mechanical energy balance is found to lead to results that are consistent with those based on the momentum balance, while leaving the average hematocrit level undetermined and required by either experimental data or an additional equation based on further theoretical work. The present analysis is used to model bifurcation using published empirical correlations quantifying the Fåhræus effect and phase separation. The model equations are extended to microvascular networks with repeated bifurcations.  相似文献   

13.
Genetic, environmental, and pharmacological interventions into the aging process can confer resistance to multiple age‐related diseases in laboratory animals, including rhesus monkeys. These findings imply that individual mechanisms of aging might contribute to the co‐occurrence of age‐related diseases in humans and could be targeted to prevent these conditions simultaneously. To address this question, we text mined 917,645 literature abstracts followed by manual curation and found strong, non‐random associations between age‐related diseases and aging mechanisms in humans, confirmed by gene set enrichment analysis of GWAS data. Integration of these associations with clinical data from 3.01 million patients showed that age‐related diseases associated with each of five aging mechanisms were more likely than chance to be present together in patients. Genetic evidence revealed that innate and adaptive immunity, the intrinsic apoptotic signaling pathway and activity of the ERK1/2 pathway were associated with multiple aging mechanisms and diverse age‐related diseases. Mechanisms of aging hence contribute both together and individually to age‐related disease co‐occurrence in humans and could potentially be targeted accordingly to prevent multimorbidity.  相似文献   

14.
Coordinated patterns of cortical morphology have been described as structural graphs and previous research has demonstrated that properties of such graphs are altered in Alzheimer''s disease (AD). However, it remains unknown how these alterations are related to cognitive deficits in individuals, as such graphs are restricted to group-level analysis. In the present study we investigated this question in single-subject grey matter networks. This new method extracts large-scale structural graphs where nodes represent small cortical regions that are connected by edges when they show statistical similarity. Using this method, unweighted and undirected networks were extracted from T1 weighted structural magnetic resonance imaging scans of 38 AD patients (19 female, average age 72±4 years) and 38 controls (19 females, average age 72±4 years). Group comparisons of standard graph properties were performed after correcting for grey matter volumetric measurements and were correlated to scores of general cognitive functioning. AD networks were characterised by a more random topology as indicated by a decreased small world coefficient (p = 3.53×10−5), decreased normalized clustering coefficient (p = 7.25×10−6) and decreased normalized path length (p = 1.91×10−7). Reduced normalized path length explained significantly (p = 0.004) more variance in measurements of general cognitive decline (32%) in comparison to volumetric measurements (9%). Altered path length of the parahippocampal gyrus, hippocampus, fusiform gyrus and precuneus showed the strongest relationship with cognitive decline. The present results suggest that single-subject grey matter graphs provide a concise quantification of cortical structure that has clinical value, which might be of particular importance for disease prognosis. These findings contribute to a better understanding of structural alterations and cognitive dysfunction in AD.  相似文献   

15.
16.
Network frailty and the geometry of herd immunity   总被引:2,自引:0,他引:2  
The spread of infectious disease through communities depends fundamentally on the underlying patterns of contacts between individuals. Generally, the more contacts one individual has, the more vulnerable they are to infection during an epidemic. Thus, outbreaks disproportionately impact the most highly connected demographics. Epidemics can then lead, through immunization or removal of individuals, to sparser networks that are more resistant to future transmission of a given disease. Using several classes of contact networks-Poisson, scale-free and small-world-we characterize the structural evolution of a network due to an epidemic in terms of frailty (the degree to which highly connected individuals are more vulnerable to infection) and interference (the extent to which the epidemic cuts off connectivity among the susceptible population that remains following an epidemic). The evolution of the susceptible network over the course of an epidemic differs among the classes of networks; frailty, relative to interference, accounts for an increasing component of network evolution on networks with greater variance in contacts. The result is that immunization due to prior epidemics can provide greater community protection than random vaccination on networks with heterogeneous contact patterns, while the reverse is true for highly structured populations.  相似文献   

17.
18.
19.
Human infections with non-typhoidal Salmonella (NTS) serovars are increasingly becoming a threat to human health globally. While all motile Salmonellae have zoonotic potential, Salmonella Enteritidis and Salmonella Typhimurium are most commonly associated with human disease, for which poultry are a major source. Despite the increasing number of human NTS infections, the epidemiology of NTS in poultry in India has not been fully understood. Hence, as a first step, we carried out epidemiological analysis to establish the incidence of NTS in poultry to evaluate the risk to human health. A total of 1215 samples (including poultry meat, tissues, egg and environmental samples) were collected from 154 commercial layer farms from southern India and screened for NTS. Following identification by cultural and biochemical methods, Salmonella isolates were further characterized by multiplex PCR, allele-specific PCR, enterobacterial repetitive intergenic consensus (ERIC) PCR and pulse field gel electrophoresis (PFGE). In the present study, 21/1215 (1.73 %) samples tested positive for NTS. We found 12/392 (3.06 %) of tissue samples, 7/460 (1.52 %) of poultry products, and 2/363 (0.55 %) of environmental samples tested positive for NTS. All the Salmonella isolates were resistant to oxytetracycline, which is routinely used as poultry feed additive. The multiplex PCR results allowed 16/21 isolates to be classified as S. Typhimurium, and five isolates as S. Enteritidis. Of the five S. Enteritidis isolates, four were identified as group D Salmonella by allele-specific PCR. All of the isolates produced different banding patterns in ERIC PCR. Of the thirteen macro restriction profiles (MRPs) obtained by PFGE, MRP 6 was predominant which included 6 (21 %) isolates. In conclusion, the findings of the study revealed higher incidence of contamination of NTS Salmonella in poultry tissue and animal protein sources used for poultry. The results of the study warrants further investigation on different type of animal feed sources, food market chains, processing plants, live bird markets etc., to evaluate the risk factors, transmission and effective control measures of human Salmonella infection from poultry products.  相似文献   

20.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号