首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The epithelial and non-epithelial cells of the intestinal wall experience a myriad of physical forces including strain, shear, and villous motility during normal gut function. Pathologic conditions alter these forces, leading to changes in the biology of these cells. The responses of intestinal epithelial cells to forces vary with both the applied force and the extracellular matrix proteins with which the cells interact, with differing effects on proliferation, differentiation, and motility, and the regulation of these effects involves similar but distinctly different signal transduction mechanisms. Although normal epithelial cells respond to mechanical forces, malignant gastrointestinal epithelial cells also respond to forces, most notably by increased cell adhesion, a critical step in tumor metastasis. This review will focus on the phenomenon of mechanical forces influencing cell biology and the mechanisms by which the gut responds these forces in both the normal as well as pathophysiologic states when forces are altered. Although more is known about epithelial responses to force, information regarding mechanosensitivity of vascular, neural, and endocrine cells within the gut wall will also be discussed, as will, the mechanism by which forces can regulate epithelial tumor cell adhesion.  相似文献   

2.
Recent advances in molecular force measurements have resulted in the quantification of the nanomechanical properties of single molecular bonds, and elucidated novel relationships between molecular architecture and biomolecular adhesion. The measured forces to rupture single intermolecular bonds revealed novel and unexpected ways that proteins respond to mechanical force. Measurement of the magnitude of interprotein forces and the distances over which they act further determined how protein architecture may contribute to both the stability and structural organization of adhesive junctions.  相似文献   

3.
Cells of the mammary gland are in intimate contact with other cells and with the extracellular matrix (ECM), both of which provide not only a biochemical context, but a mechanical context as well. Cell-mediated contraction allows cells to sense the stiffness of their microenvironment, and respond with appropriate mechanosignaling events that regulate gene expression and differentiation. ECM composition and organization are tightly regulated throughout development of the mammary gland, resulting in corresponding regulation of the mechanical environment and proper tissue architecture. Mechanical regulation is also at play during breast carcinoma progression, as changes in ECM deposition, composition, and organization accompany breast carcinoma. These changes result in stiffer matrices that activate mechanosignaling pathways and thereby induce cell proliferation, facilitate local tumor cell invasion, and promote progression. Thus, understanding the role of forces in the mammary gland is crucial to understanding both normal developmental and pathological processes.  相似文献   

4.
Flexible substrata for the detection of cellular traction forces   总被引:5,自引:0,他引:5  
By modulating adhesion signaling and cytoskeletal organization, mechanical forces play an important role in various cellular functions, from propelling cell migration to mediating communication between cells. Recent developments have resulted in several new approaches for the detection, analysis and visualization of mechanical forces generated by cultured cells. Combining these methods with other approaches, such as green-fluorescent protein (GFP) imaging and gene manipulation, proves to be particularly powerful for analyzing the interplay between extracellular physical forces and intracellular chemical events.  相似文献   

5.
How proteins respond to pulling forces, or protein nanomechanics, is a key contributor to the form and function of biological systems. Indeed, the conventional view that proteins are able to diffuse in solution does not apply to the many polypeptides that are anchored to rigid supramolecular structures. These tethered proteins typically have important mechanical roles that enable cells to generate, sense, and transduce mechanical forces. To fully comprehend the interplay between mechanical forces and biology, we must understand how protein nanomechanics emerge in living matter. This endeavor is definitely challenging and only recently has it started to appear tractable. Here, I introduce the main in vitro single-molecule biophysics methods that have been instrumental to investigate protein nanomechanics over the last 2 decades. Then, I present the contemporary view on how mechanical force shapes the free energy of tethered proteins, as well as the effect of biological factors such as post-translational modifications and mutations. To illustrate the contribution of protein nanomechanics to biological function, I review current knowledge on the mechanobiology of selected muscle and cell adhesion proteins including titin, talin, and bacterial pilins. Finally, I discuss emerging methods to modulate protein nanomechanics in living matter, for instance by inducing specific mechanical loss-of-function (mLOF). By interrogating biological systems in a causative manner, these new tools can contribute to further place protein nanomechanics in a biological context.  相似文献   

6.
Vinculin helps cells regulate and respond to mechanical forces. It is a scaffolding protein that tightly regulates its interactions with potential binding partners within adhesive structures—including focal adhesions that link the cell to the extracellular matrix and adherens junctions that link cells to each other—that physically connect the force-generating actin cytoskeleton (CSK) with the extracellular environment. This tight control of binding partner interaction—mediated by vinculin's autoinhibitory head–tail interaction—allows vinculin to rapidly interact and detach in response to changes in the dynamic forces applied through the cell. In doing so, vinculin modulates the structural composition of focal adhesions and the cell's ability to generate traction forces and adhesion strength. Recent evidence suggests that vinculin plays a similar role in regulating the fate and function of cell–cell junctions, further underscoring the importance of this protein. Using our lab's recent work as a starting point, this commentary explores several outstanding questions regarding the nature of vinculin activation and its function within focal adhesions and adherens junctions.  相似文献   

7.
Arterial smooth muscle cells (ASMCs), the predominant cell type within the arterial wall, detect and respond to external mechanical forces. These forces can be derived from blood flow (i.e. pressure and stretch) or from the supporting extracellular matrix (i.e. stiffness and topography). The healthy arterial wall is elastic, allowing the artery to change shape in response to changes in blood pressure, a property known as arterial compliance. As we age, the mechanical forces applied to ASMCs change; blood pressure and arterial wall rigidity increase and result in a reduction in arterial compliance. These changes in mechanical environment enhance ASMC contractility and promote disease-associated changes in ASMC phenotype. For mechanical stimuli to programme ASMCs, forces must influence the cell’s load-bearing apparatus, the cytoskeleton. Comprised of an interconnected network of actin filaments, microtubules and intermediate filaments, each cytoskeletal component has distinct mechanical properties that enable ASMCs to respond to changes within the mechanical environment whilst maintaining cell integrity. In this review, we discuss how mechanically driven cytoskeletal reorganisation programmes ASMC function and phenotypic switching.  相似文献   

8.
Accumulated evidence indicates that ROS fluctuations play a critical role in cell division. Dividing plant cells rapidly respond to them. Experimental disturbance of ROS homeostasis affects: tubulin polymerization; PPB, mitotic spindle and phragmoplast assembly; nuclear envelope dynamics; chromosome separation and movement; cell plate formation. Dividing cells mainly accumulate at prophase and delay in passing through the successive cell division stages. Notably, many dividing root cells of the rhd2 Arabidopsis thaliana mutants, lacking the RHD2/AtRBOHC protein function, displayed aberrations, comparable to those induced by low ROS levels. Some protein molecules, playing key roles in signal transduction networks inducing ROS production, participate in cell division. NADPH oxidases and their regulators PLD, PI3K and ROP-GTPases, are involved in MT polymerization and organization. Cellular ROS oscillations function as messages rapidly transmitted through MAPK pathways inducing MAP activation, thus affecting MT dynamics and organization. RNS implication in cell division is also considered.  相似文献   

9.
Vinculin helps cells regulate and respond to mechanical forces. It is a scaffolding protein that tightly regulates its interactions with potential binding partners within adhesive structures—including focal adhesions that link the cell to the extracellular matrix and adherens junctions that link cells to each other—that physically connect the force-generating actin cytoskeleton (CSK) with the extracellular environment. This tight control of binding partner interaction—mediated by vinculin''s autoinhibitory head–tail interaction—allows vinculin to rapidly interact and detach in response to changes in the dynamic forces applied through the cell. In doing so, vinculin modulates the structural composition of focal adhesions and the cell''s ability to generate traction forces and adhesion strength. Recent evidence suggests that vinculin plays a similar role in regulating the fate and function of cell–cell junctions, further underscoring the importance of this protein. Using our lab''s recent work as a starting point, this commentary explores several outstanding questions regarding the nature of vinculin activation and its function within focal adhesions and adherens junctions.  相似文献   

10.
11.
Mechanical biochemistry of proteins one molecule at a time   总被引:1,自引:0,他引:1  
The activity of proteins and their complexes often involves the conversion of chemical energy (stored or supplied) into mechanical work through conformational changes. Mechanical forces are also crucial for the regulation of the structure and function of cells and tissues. Thus, the shape of eukaryotic cells (and by extension, that of the multicellular organisms they form) is the result of cycles of mechanosensing, mechanotransduction, and mechanoresponse. Recently developed single-molecule atomic force microscopy techniques can be used to manipulate single molecules, both in real time and under physiological conditions, and are ideally suited to directly quantify the forces involved in both intra- and intermolecular protein interactions. In combination with molecular biology and computer simulations, these techniques have been applied to characterize the unfolding and refolding reactions in a variety of proteins. Single-molecule mechanical techniques are providing fundamental information on the structure and function of proteins and are becoming an indispensable tool to understand how these molecules fold and work.  相似文献   

12.
Elastic protein-based machines (bioelastic materials) can be designed to perform diverse biological energy conversions. Coupled with the remarkable energy-conversion capacity of cells, this makes possible a tissue-restoration approach to tissue engineering. When properly attached to the extracellular matrix, cells sense the forces to which they are subjected and respond by producing an extracellular matrix that will withstand those forces. Elastic protein-based polymers can be designed as temporary functional scaffoldings that cells can enter, attach to, spread, sense forces and remodel, with the potential to restore natural tissue.  相似文献   

13.
Jones RL 《Plant physiology》1969,44(10):1428-1438
Ultracentrifugation of barley aleurone cells results in the stratification of organelles thus allowing for a quantitation of those organelles. Gibberellic acid (GA(3))-stimulated alpha-amylase production in stratified cells is reduced by centrifugation at gravitational forces greater than 40,000g. Forces below 30,000g do not affect GA(3)-stimulated alpha-amylase production although stratification of organelles occurs at these forces. The ability of centrifuged cells to respond maximally to GA(3) by producing alpha-amylase is related to the degree of redistribution of organelles within these cells. Thus, recovery of cells from centrifugation at forces below 30,000g is rapid, while recovery from forces above 40,000g is slow.  相似文献   

14.
Abstract

The epithelium comprises an important tissue that lines the internal and external surfaces of metazoan organs. In order to organize sheets of epithelial cells into three-dimensional tissues, it requires the coordination of basic cellular processes such as polarity, adhesion, growth, and differentiation. Moreover, as a primary barrier to the external environment, epithelial tissues are often subjected to physical forces and damage. This critical barrier function dictates that these fundamental cellular processes are continually operational in order to maintain tissue homeostasis in the face of almost constant trauma and stress. A protein that is largely responsible for the organization and maintenance of epithelial tissues is the transmembrane protein, E-cadherin, found at the surface of epithelial cells. Though originally investigated for its essential role in mediating intercellular cohesion, its impact on a wide array of physiological processes underscores its fundamental contributions to tissue development and its perturbation in a variety of common diseases.  相似文献   

15.
P A Watson 《FASEB journal》1991,5(7):2013-2019
Cells are exposed during their lifetimes to an array of physical forces ranging from those generated by association with other cells and extracellular matrices to the constant forces placed on cells by gravity. Alterations in these forces, either with differentiation and development or changes in activity or behavior, result in modifications in the biochemistry and adaptation in structure and function of cells. Also, a variety of differentiated cells have unique shapes that relate to extremely specialized functions, with structure and function emerging concurrently. These observations lead to the concept that the forces perceived by cells may dictate their shape, and the combined effects of external physical stimuli and internal forces responsible for maintaining cell shape may stimulate alterations in cellular biochemistry. This review examines the state of our knowledge concerning the mechanisms through which physical forces are converted to biochemical signals (mechanotransduction), and speculates on the molecular structures that may be involved in mechanotransduction.  相似文献   

16.
Protein synthesis is the predominant activity of growing bacteria; the protein synthesis system accounts for more than one-half the cell's dry mass and consumes most of the cell's energy during rapid growth. Translation has been studied extensively using model organisms, and the translational apparatus is qualitatively similar in terms of structure and function across all known forms of life. However, little is known about variation between organisms in translational performance. Using measurements of macromolecular content in a phylogenetically diverse collection of bacteria with contrasting ecological strategies, we found that the translational power (the rate of protein synthesis normalized to the mass of the protein synthesis system) is three- to fourfold higher among bacteria that respond rapidly to nutrient availability than among bacteria that respond slowly. An analysis of codon use in completely sequenced bacterial genomes confirmed that the selective forces acting on translation vary with the ecological strategy. We propose that differences in translational power result from ecologically based variation among microbes in the relative importance of two competing benefits: reducing the biomass invested in the protein synthesis system and reducing the energetic expense of protein synthesis.  相似文献   

17.
Although myosin II is known to play an important role in cell migration, little is known about its specific functions. We have addressed the function of one of the isoforms of myosin II, myosin IIB, by analyzing the movement and mechanical characteristics of fibroblasts where this protein has been ablated by gene disruption. Myosin IIB null cells displayed multiple unstable and disorganized protrusions, although they were still able to generate a large fraction of traction forces when cultured on flexible polyacrylamide substrates. However, the traction forces were highly disorganized relative to the direction of cell migration. Analysis of cell migration patterns indicated an increase in speed and decrease in persistence, which were likely responsible for the defects in directional movements as demonstrated with Boyden chambers. In addition, unlike control cells, mutant cells failed to respond to mechanical signals such as compressing forces and changes in substrate rigidity. Immunofluorescence staining indicated that myosin IIB was localized preferentially along stress fibers in the interior region of the cell. Our results suggest that myosin IIB is involved not in propelling but in directing the cell movement, by coordinating protrusive activities and stabilizing the cell polarity.  相似文献   

18.
Clinically, increased breast tumor stiffness is associated with metastasis and poorer outcomes. Yet, in vitro studies of tumor cells in 3D scaffolds have found decreased invasion in stiffer environments. To resolve this apparent contradiction, MDA-MB-231 breast tumor spheroids were embedded in ‘low’ (2 kPa) and ‘high’ (12 kPa) stiffness 3D hydrogels comprised of methacrylated gelatin/collagen I, a material that allows for physiologically-relevant changes in stiffness while matrix density is held constant. Cells in high stiffness materials exhibited delayed invasion, but more abundant actin-enriched protrusions, compared to those in low stiffness. We find that cells in high stiffness had increased expression of Mena, an invadopodia protein associated with metastasis in breast cancer, as a result of EGFR and PLCγ1 activation. As invadopodia promote invasion through matrix remodeling, we examined matrix organization and determined that spheroids in high stiffness displayed a large fibronectin halo. Interestingly, this halo did not result from increased fibronectin production, but rather from Mena/α5 integrin dependent organization. In high stiffness environments, FN1 knockout inhibited invasion while addition of exogenous cellular fibronectin lessened the invasion delay. Analysis of fibronectin isoforms demonstrated that EDA-fibronectin promoted invasion and that clinical invasive breast cancer specimens displayed elevated EDA-fibronectin. Combined, our data support a mechanism by which breast cancer cells respond to stiffness and render the environment conducive to invasion. More broadly, these findings provide important insight on the roles of matrix stiffness, composition, and organization in promoting tumor invasion.  相似文献   

19.
In development and in homeostatic maintenance of tissues, stem cells and progenitor cells are constantly subjected to forces. These forces can lead to significant changes in gene expression and function of stem cells, mediating self-renewal, lineage specification, and even loss of function. One of the ways that has been proposed to mediate these functional changes in stem cells is nuclear mechanotransduction — the process by which forces are converted to signals in the nucleus. The purpose of this review is to discuss the means by which mechanical signals are transduced into the nucleus, through the linker of nucleoskeleton and cytoskeleton (LINC) complex and other nuclear envelope transmembrane (NET) proteins, which connect the cytoskeleton to the nucleus. We discuss how LINC/NETs confers tissue-specific mechanosensitivity to cells and further elucidate how LINC/NETs acts as a control center for nuclear mechanical signals, regulating both gene expression and chromatin organization. Throughout, we primarily focus on stem cell–specific examples, notwithstanding that this is a nascent field. We conclude by highlighting open questions and pointing the way to enhanced research efforts to understand the role nuclear mechanotransduction plays in cell fate choice.  相似文献   

20.
In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al.[1] cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod's tip has been called a "terminal cone". In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号