首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human transthyretin (TTR) is an amyloidogenic protein. The pathway of TTR amyloid formation has been proposed based on lines of evidence: TTR tetramer first dissociates into native monomers, which is shown to be a rate-limiting step in the formation of fibrils. Subsequently, the monomeric species partially unfold to form the aggregation intermediates. Once such intermediates are formed, the following self-assembly process is a downhill polymerization. Hence, tertiary structural changes within the monomers after the dissociation are essential for the amyloid formation. These tertiary structural changes can be facilitated by partial denaturation. To probe the conformational changes under the partially denaturing conditions, five independent trajectories were collected for the wild-type (WT) and its pathogenic variants at 300 and 350 K, resulting in simulations that totaled 59 ns. Under these conditions, L55P variant is more labile than the wild-type and V30M variant. We have observed that the D strand of WT-TTR is trapped in two local minima: the native conformation and the amyloidogenic fold that resembles the surface loop of residues 54-55 of L55P variant. In the tetrameric state, the F strand is bent with large separations at the F-F' interface. This strand becomes flatter in the monomeric state, which may facilitate the formation of new F-F' interface with possible prolonged hydrogen bonds and/or shift in beta-strand register in the fibril state. During the unfolding process, the anticorrelated motion between the strands H and G as well as the strands H and A pulls the H strand out of the inner sheet plane, leading to a more twisted inner sheet. Our simulation has provided important detailed structural information about the partially unfolded state of TTR that may be related to the amyloidogenic intermediates.  相似文献   

2.
The reactivity, stability and unfolding of wild-type (WT) Fusarium solani pisi cutinase and L153Q, S54D and T179C variants were studied in the absence and presence of the dioctyl sulfosuccinate sodium salt (AOT) surfactant. In the absence of surfactant the S54D variant catalytic activity is similar to that of the WT cutinase, whereas L153Q and T179C variants show a lower activity. AOT addition induces an activity reduction for WT cutinase and its variants, although for low AOT concentrations a small increase of activity was observed for S54D and T179C. The enzyme deactivation in the presence of 0.5 mM AOT is relatively slow for the S54D and T179C variants when compared to wild-type cutinase and L153Q variant. These results were correlated with secondary and tertiary structure changes assessed by the CD spectrum and fluorescence of the single tryptophan and the six tyrosine residues. The WT cutinase and S54D variant have similar secondary and tertiary structures that differ from those of T179C and L153Q variants. L153Q, S54D and T179C mutations prevent the formation of hydrophobic crevices responsible for the unfolding by anionic surfactants, with the consequent decrease of the AOT-cutinase interactions.  相似文献   

3.
HCV infection is an urgent global health problem that has triggered a drive to discover therapies that specifically target the virus. BMS-791325 is a novel direct antiviral agent specifically targeting HCV NS5B, an RNA-dependent RNA polymerase. Robust viral clearance of HCV was observed in infected patients treated with BMS-791325 in combination with other anti-HCV agents in Phase 2 clinical studies. Biochemical and biophysical studies revealed that BMS-791325 is a time-dependent, non-competitive inhibitor of the polymerase. Binding studies with NS5B genetic variants (WT, L30S, and P495L) exposed a two-step, slow binding mechanism, but details of the binding mechanism differed for each of the polymerase variants. For the clinically relevant resistance variant (P495L), the rate of initial complex formation and dissociation is similar to WT, but the kinetics of the second step is significantly faster, showing that this variant impacts the final tight complex. The resulting shortened residence time translates into the observed decrease in inhibitor potency. The L30S variant has a significantly different profile. The rate of initial complex formation and dissociation is 7–10 times faster for the L30S variant compared with WT; however, the forward and reverse rates to form the final complex are not significantly different. The impact of the L30S variant on the inhibition profile and binding kinetics of BMS-791325 provides experimental evidence for the dynamic interaction of fingers and thumb domains in an environment that supports the formation of active replication complexes and the initiation of RNA synthesis.  相似文献   

4.
5.
The nucleocapsid protein (NC) of HIV-1 is 55 amino acids in length and possesses two CCHC-type zinc fingers. Finger one (N-terminal) contributes significantly more to helix destabilizing activity than finger two (C-terminal). Five amino acids differ between the two zinc fingers. To determine at the amino acid level the reason for the apparent distinction between the fingers, each different residue in finger one was incrementally replaced by the one at the corresponding location in finger two. Mutants were analyzed in annealing assays with unstructured and structured substrates. Three groupings emerged: (1) those similar to wild-type levels (N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W, which had substantially greater helix destabilizing activity than that of the wild type. Unlike I24Q and the other mutants, N27D was defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro assays. Double and triple mutants F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix destabilization, suggesting that the I24Q and N27D mutations have a dominant negative effect and abolish the positive influence of F16W. Results show that amino acid differences at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity.  相似文献   

6.
Transthyretin is a tetrameric plasma protein associated with two forms of amyloid disease. The structure of the highly amyloidogenic transthyretin triple mutant TTRG53S/E54D/L55S determined at 2.3 A resolution reveals a novel conformation: the beta-slip. A three-residue shift in beta strand D places Leu-58 at the position normally occupied by Leu-55 now mutated to serine. The beta-slip is best defined in two of the four monomers, where it makes new protein-protein interactions to an area normally involved in complex formation with retinol-binding protein. This interaction creates unique packing arrangements, where two protein helices combine to form a double helix in agreement with fiber diffraction and electron microscopy data. Based on these findings, a novel model for transthyretin amyloid formation is presented.  相似文献   

7.
The regioselectivity for progesterone hydroxylation by cytochrome P450 2B1 was re-engineered based on the x-ray crystal structure of cytochrome P450 2C5. 2B1 is a high K(m) progesterone 16alpha-hydroxylase, whereas 2C5 is a low K(m) progesterone 21-hydroxylase. Initially, nine individual 2B1 active-site residues were changed to the corresponding 2C5 residues, and the mutants were purified from an Escherichia coli expression system and assayed for progesterone hydroxylation. At 150 microm progesterone, I114A, F297G, and V363L showed 5-15% of the 21-hydroxylase activity of 2C5, whereas F206V showed high activity for an unknown product and a 13-fold decrease in K(m). Therefore, a quadruple mutant, I114A/F206V/F297G/V363L (Q), was constructed that showed 60% of 2C5 progesterone 21-hydroxylase activity and 57% regioselectivity. Based on their 2C5-like testosterone hydroxylation profiles, S294D and I477F alone and in combination were added to the quadruple mutant. All three mutants showed enhanced regioselectivity (70%) for progesterone 21-hydroxylation, whereas only Q/I477F had a higher k(cat). Finally, the remaining three single mutants, V103I, V367L, and G478V, were added to Q/I477F and Q/S294D/I477F, yielding seven additional multiple mutants. Among these, Q/V103I/S294D/I477F showed the highest k(cat) (3-fold higher than that of 2C5) and 80% regioselectivity for progesterone 21-hydroxylation. Docking of progesterone into a three-dimensional model of this mutant indicated that 21-hydroxylation is favored. In conclusion, a systematic approach to convert P450 regioselectivity across subfamilies suggests that active-site residues are mainly responsible for regioselectivity differences between 2B1 and 2C5 and validates the reliability of 2B1 models based on the crystal structure of 2C5.  相似文献   

8.
The pore region of cyclic nucleotide–gated (CNG) channels acts as the channel gate. Therefore, events occurring in the cyclic nucleotide–binding (CNB) domain must be coupled to the movements of the pore walls. When Glu363 in the pore region, Leu356 and Thr355 in the P helix, and Phe380 in the upper portion of the S6 helix are mutated into an alanine, gating is impaired: mutant channels E363A, L356A, T355A, and F380A desensitize in the presence of a constant cGMP concentration, contrary to what can be observed in wild-type (WT) CNGA1 channels. Similarly to C-type inactivation of K+ channels, desensitization in these mutant channels is associated with rearrangements of residues in the outer vestibule. In the desensitized state, Thr364 residues in different subunits become closer and Pro366 becomes more accessible to extracellular reagents. Desensitization is also observed in the mutant channel L356C, but not in the double-mutant channel L356C+F380C. Mutant channels L356F and F380K did not express, but cGMP-gated currents with a normal gating were observed in the double-mutant channels L356F+F380L and L356D+F380K. Experiments with tandem constructs with L356C, F380C, and L356C+F380C and WT channels indicate that the interaction between Leu356 and Phe380 is within the same subunit. These results show that Leu356 forms a hydrophobic interaction with Phe380, coupling the P helix with S6, whereas Glu363 could interact with Thr355, coupling the pore wall to the P helix. These interactions are essential for normal gating and underlie the transduction between the CNB domain and the pore.  相似文献   

9.
As a target of antiviral drugs, the influenza A M2 protein has been the focus of numerous structural studies and has been extensively explored as a model ion channel. In this study, we capitalize on the expanding body of high‐resolution structural data available for the M2 protein to design and interpret site‐directed spin‐labeling electron paramagnetic resonance spectroscopy experiments on drug‐induced conformational changes of the M2 protein embedded in lipid bilayers. We obtained data in the presence of adamantane drugs for two different M2 constructs (M2TM 22–46 and M2TMC 23–60). M2TM peptides were spin labeled at the N‐terminal end of the transmembrane domain. M2TMC peptides were spin labeled site specifically at cysteine residues substituted for amino acids within the transmembrane domain (L36, I39, I42, and L43) and the C‐terminal amphipathic helix (L46, F47, F48, C50, I51, Y52, R53, F54, F55, and E56). Addition of adamantane drugs brought about significant changes in measured electron paramagnetic resonance spectroscopy environmental parameters consistent with narrowing of the transmembrane channel pore and closer packing of the C‐terminal amphipathic helices.  相似文献   

10.
The relative replicative fitness of human immunodeficiency virus type 1 (HIV-1) mutants selected by different protease inhibitors (PIs) in vivo was determined. Each mutant was compared to wild type (WT), NL4-3, in the absence of drugs by several methods, including clonal genotyping of cultures infected with two competing viral variants, kinetics of viral antigen production, and viral infectivity/virion particle ratios. A nelfinavir-selected protease D30N substitution substantially decreased replicative capacity relative to WT, while a saquinavir-selected L90M substitution moderately decreased fitness. The D30N mutant virus was also outcompeted by the L90M mutant in the absence of drugs. A major natural polymorphism of the HIV-1 protease, L63P, compensated well for the impairment of fitness caused by L90M but only slightly improved the fitness of D30N. Multiply substituted indinavir-selected mutants M46I/L63P/V82T/I84V and L10R/M46I/L63P/V82T/I84V were just as fit as WT. These results indicate that the mutations which are usually initially selected by nelfinavir and saquinavir, D30N and L90M, respectively, impair fitness. However, additional mutations may improve the replicative capacity of these and other drug-resistant mutants. Hypotheses based on the greater fitness impairment of the nelfinavir-selected D30N mutant are suggested to explain observations that prolonged responses to delayed salvage regimens, including alternate PIs, may be relatively common after nelfinavir failure.  相似文献   

11.
The backbone assignments, secondary structure, topology, and dynamics of the single-chain hepatitis C virus NS3 protease NS4A cofactor complex have been determined by NMR spectroscopy. Residues I34 to S181 of NS3 and the central three residues of the NS4A cofactor were assigned and the secondary structure was verified for these residues. In several X-ray structures of NS4A-bound NS3 protease, residues 1 to 28 are stabilized by crystal packing, which allows for the formation of the A0 strand and alpha0 helix. In solution, these N-terminal residues are largely unassigned and no evidence of a well-structured A0 strand or alpha0 helix was detected. NOEs between residues in the E1-F1 loop (containing D81) and the alpha1 helix (containing H57) together with the detection of a D81-H57 hydrogen bond indicate that in solution the catalytic triad (D81, H57, S139) of the protease is better ordered in the presence of the NS4A cofactor. This is consistent with the earlier crystallographic results and may explain the observed increase in catalytic activity of the enzyme due to NS4A binding. A model-free analysis of our relaxation data indicates substantial exchange rates for residues V51-D81, which comprise the upper part of the N-terminal beta-barrel. A comparison of chemical-shift differences between NS3 protease and the NS3 protease-NS4A complex shows extensive chemical-shift changes for residues V51-D81 indicating that non-local structural changes occur upon NS4A binding to the NS3 protease that are propagated well beyond the protease-cofactor interaction site. This is consistent with crystallographic data that reveal large structural rearrangements of the strand and loop regions formed by residues V51-D81 as a result of NS4A binding. The coincidence of large exchange rates for the NS3 protease-NS4A complex with chemical-shift differences due to NS4A binding suggests that residues V51-D81 of the NS3 protease NS4A complex are in slow exchange with a NS4A-free conformation of NS3 protease.  相似文献   

12.
The folding pathways of four mutants in which bulky hydrophobic residues in the B helix of apomyoglobin (ApoMb) are replaced by alanine (I28A, L29A, I30A, and L32A) have been analyzed using equilibrium and kinetic methods employing NMR, CD, fluorescence and mass spectrometry. Hydrogen exchange pulse-labeling followed by mass spectrometry reveals detectable intermediates in the kinetic folding pathways of each of these mutants. Comparison of the quench-flow data analyzed by NMR for the wild-type protein and the mutants showed that the substitutions I28A, L29A and L32A lead to destabilization of the B helix in the burst phase kinetic intermediate, relative to wild-type apomyoglobin. In contrast, the I30A mutation apparently has a slight stabilizing effect on the B helix in the burst phase intermediate; under weak labeling conditions, residues in the C helix region were also relatively stabilized in the mutant compared to the wild-type protein. This suggests that native-like helix B/helix C packing interactions occur in the folding intermediate. The L32A mutant showed significantly lower proton occupancies in the burst phase for several residues in the G helix, specifically F106, I107, E109 and A110, which are in close proximity to L32 in the X-ray structure of myoglobin, providing direct evidence that native-like helix B/helix G contacts are formed in the apomyoglobin burst phase intermediate. The L29A mutation resulted in an increase in burst phase proton occupancies for several residues in the E helix. Since these regions of the B and E helices are not in contact in the native myoglobin structure, these effects suggest the possibility of non-native B/E packing interactions in the kinetic intermediate. The differing effects of these B helix mutations on the apomyoglobin folding process suggests that each side-chain plays a different and important role in forming stable structure in the burst phase intermediate, and points to a role for both native-like and non-native contacts in stabilization of the folding intermediate.  相似文献   

13.
The bundling of the N‐terminal, partial domain helix (Helix C′) of human erythroid α‐spectrin (αI) with the C‐terminal, partial domain helices (Helices A′ and B′) of erythroid β‐spectrin (βI) to give a spectrin pseudo structural domain (triple helical bundle A′B′C′) has long been recognized as a crucial step in forming functional spectrin tetramers in erythrocytes. We have used apparent polarity and Stern–Volmer quenching constants of Helix C′ of αI bound to Helices A′ and B′ of βI, along with previous NMR and EPR results, to propose a model for the triple helical bundle. This model was used as the input structure for molecular dynamics simulations for both wild type (WT) and αI mutant L49F. The simulation output structures show a stable helical bundle for WT, but not for L49F. In WT, four critical interactions were identified: two hydrophobic clusters and two salt bridges. However, in L49F, the region downstream of Helix C′ was unable to assume a helical conformation and one critical hydrophobic cluster was disrupted. Other molecular interactions critical to the WT helical bundle were also weakened in L49F, possibly leading to the lower tetramer levels observed in patients with this mutation‐induced blood disorder.  相似文献   

14.
In a previous study 23 residues in helix XI of the cysteine-less melibiose carrier were changed individually to cysteine. Several of these cysteine mutants (K377C, A383C, F385C, L391C, G395C) had low transport activity and they were white on melibiose MacConkey fermentation plates. After several days of incubation of these white clones on melibiose MacConkey plates a rare red mutant appeared. The plasmid DNA was then isolated and sequenced. The two second site revertants from K377C were I22S and D59A. This change of aspartic acid to a neutral residue suggests that physiologically there is an interaction between K377 and D59 (possibly a salt bridge). The revertants from A383C were in positions 20 (F20L) and 22 (I22S and I22N). Revertants of F385C were intrahelical changes (I387M and A388G) and a change in C-terminal loop (R441C). Revertants of L391C were in helix I (I22N, I22T and D19E) and helix V (A152S). Revertants of G395C were in helix I (D19E and I22N). We suggest that there is an interaction between helix XI and helices I, II, and V and proximity between these helices.  相似文献   

15.
Ribonuclease A contains two exposed loop regions, around Ala20 and Asn34. Only the loop around Ala20 is sufficiently flexible even under native conditions to allow cleavage by nonspecific proteases. In contrast, the loop around Asn34 (together with the adjacent beta-sheet around Thr45) is the first region of the ribonuclease A molecule that becomes susceptible to thermolysin and trypsin under unfolding conditions. This second region therefore has been suggested to be involved in early steps of unfolding and was designated as the unfolding region of the ribonuclease A molecule. Consequently, modifications in this region should have a great impact on the unfolding and, thus, on the thermodynamic stability. Also, if the Ala20 loop contributes to the stability of the ribonuclease A molecule, rigidification of this flexible region should stabilize the entire protein molecule. We substituted several residues in both regions without any dramatic effects on the native conformation and catalytic activity. As a result of their remarkably differing stability, the variants fell into two groups carrying the mutations: (a) A20P, S21P, A20P/S21P, S21L, or N34D; (b) L35S, L35A, F46Y, K31A/R33S, L35S/F46Y, L35A/F46Y, or K31A/R33S/F46Y. The first group showed a thermodynamic and kinetic stability similar to wild-type ribonuclease A, whereas both stabilities of the variants in the second group were greatly decreased, suggesting that the decrease in DeltaG can be mainly attributed to an increased unfolding rate. Although rigidification of the Ala20 loop by introduction of proline did not result in stabilization, disturbance of the network of hydrogen bonds and hydrophobic interactions that interlock the proposed unfolding region dramatically destabilized the ribonuclease A molecule.  相似文献   

16.
Niemann-Pick C1-like 1 (NPC1L1) is an essential protein for dietary cholesterol absorption. Nonsynonymous (NS) variants of NPC1L1 in humans have been suggested to associate with cholesterol absorption variations. However, information concerning the characteristics and mechanism of these variants in cholesterol uptake is limited. In this study, we analyzed the cholesterol uptake ability of the 19 reported NS variants of NPC1L1 identified from cholesterol low absorbers. Among these variants, L110F, R306C, A395V, G402S, T413M, R693C, R1214H, and R1268H could partially mediate cellular cholesterol uptake and were categorized as partially dysfunctional variants. The other 11 variants including T61M, N132S, D398G, R417W, G434R, T499M, S620C, I647N, G672R, S881L, and R1108W could barely facilitate cholesterol uptake, and were classified into the severely dysfunctional group. The partially dysfunctional variants showed mild defects in one or multiple aspects of cholesterol-regulated recycling, subcellular localization, glycosylation, and protein stability. The severely dysfunctional ones displayed remarkable defects in all these aspects and were rapidly degraded through the ER-associated degradation (ERAD) pathway. In vivo analyses using adenovirus-mediated expression in mouse liver confirmed that the S881L variant failed to localize to liver canalicular membrane, and the mice showed defects in biliary cholesterol re-absorption, while the G402S variant appeared to be similar to wild-type NPC1L1 in mouse liver. This study suggests that the dysfunction of the 19 variants on cholesterol absorption is due to the impairment of recycling, subcellular localization, glycosylation, or stability of NPC1L1.  相似文献   

17.
The complete amino acid sequence of coagulogen purified from the hemocytes of the horseshoe crab Carcinoscorpius rotundicauda was determined by characterization of the NH2-terminal sequence and the peptides generated after digestion of the protein with lysyl endopeptidase, Staphylococcal aureus protease V8 and trypsin. Upon sequencing the peptides by the automated Edman method, the following sequence was obtained: A D T N A P L C L C D E P G I L G R N Q L V T P E V K E K I E K A V E A V A E E S G V S G R G F S L F S H H P V F R E C G K Y E C R T V R P E H T R C Y N F P P F V H F T S E C P V S T R D C E P V F G Y T V A G E F R V I V Q A P R A G F R Q C V W Q H K C R Y G S N N C G F S G R C T Q Q R S V V R L V T Y N L E K D G F L C E S F R T C C G C P C R N Y Carcinoscorpius coagulogen consists of a single polypeptide chain with a total of 175 amino acid residues and a calculated molecular weight of 19,675. The secondary structure calculated by the method of Chou and Fasman reveals the presence of an alpha-helix region in the peptide C segment (residue Nos. 19 to 46), which is released during the proteolytic conversion of coagulogen to coagulin gel. The beta-sheet structure and the 16 half-cystines found in the molecule appear to yield a compact protein stable to acid and heat. The amino acid sequences of coagulogen of four species of limulus have been compared and the interspecies evolutionary differences are discussed.  相似文献   

18.
Hepatitis C virus NS3-4A is a membrane-bound enzyme complex that exhibits serine protease, RNA helicase, and RNA-stimulated ATPase activities. This enzyme complex is essential for viral genome replication and has been recently implicated in virus particle assembly. To help clarify the role of NS4A in these processes, we conducted alanine scanning mutagenesis on the C-terminal acidic domain of NS4A in the context of a chimeric genotype 2a reporter virus. Of 13 mutants tested, two (Y45A and F48A) had severe defects in replication, while seven (K41A, L44A, D49A, E50A, M51A, E52A, and E53A) efficiently replicated but had severe defects in virus particle assembly. Multiple strategies were used to identify second-site mutations that suppressed these NS4A defects. The replication defect of NS4A F48A was partially suppressed by mutation of NS4B I7F, indicating that a genetic interaction between NS4A and NS4B contributes to RNA replication. Furthermore, the virus assembly defect of NS4A K41A was suppressed by NS3 Q221L, a mutation previously implicated in overcoming other virus assembly defects. We therefore examined the known enzymatic activities of wild-type or mutant forms of NS3-4A but did not detect specific defects in the mutants. Taken together, our data reveal interactions between NS4A and NS4B that control genome replication and between NS3 and NS4A that control virus assembly.  相似文献   

19.
Hepatitis C Virus (HCV) NS4B protein has many roles in HCV genome replication. Recently, our laboratory (Q. Han, J. Aligo, D. Manna, K. Belton, S. V. Chintapalli, Y. Hong, R. L. Patterson, D. B. van Rossum, and K. V. Konan, J. Virol. 85:6464–6479, 2011) and others (D. M. Jones, A. H. Patel, P. Targett-Adams, and J. McLauchlan, J. Virol. 83:2163–2177, 2009; D. Paul, I. Romero-Brey, J. Gouttenoire, S. Stoitsova, J. Krijnse-Locker, D. Moradpour, and R. Bartenschlager, J. Virol. 85:6963–6976, 2011) have also reported NS4B''s function in postreplication steps. Indeed, replacement of the NS4B C-terminal domain (CTD) in the HCV JFH1 (genotype 2a [G2a]) genome with sequences from Con1 (G1b) or H77 (G1a) had a negligible impact on JFH1 genome replication but attenuated virus production. Since NS4B interacts weakly with the HCV genome, we postulated that NS4B regulates the function of host or virus proteins directly involved in HCV production. In this study, we demonstrate that the integrity of the JFH1 NS4B CTD is crucial for efficient JFH1 genome encapsidation. Further, two adaptive mutations (NS4B N216S and NS5A C465S) were identified, and introduction of these mutations into the chimera rescued virus production to various levels, suggesting a genetic interaction between the NS4B and NS5A proteins. Interestingly, cells infected with chimeric viruses displayed a markedly decreased NS5A hyperphosphorylation state (NS5A p58) relative to JFH1, and the adaptive mutations differentially rescued NS5A p58 formation. However, immunofluorescence staining indicated that the decrease in NS5A p58 did not alter NS5A colocalization with the core around lipid droplets (LDs), the site of JFH1 assembly, suggesting that NS5A fails to facilitate the transfer of HCV RNA to the capsid protein on LDs. Alternatively, NS4B''s function in HCV genome encapsidation may entail more than its regulation of the NS5A phosphorylation state.  相似文献   

20.
We have previously described an isolated kinetoplast system from Crithidia fasciculata capable of ATP-dependent replication of kinetoplast DNA minicircles (L. Birkenmeyer and D.S. Ray, J. Biol. Chem. 261: 2362-2368, 1986). We present here the identification of two new minicircle species observed in short pulse-labeling experiments in this system. The earliest labeled minicircle species (component A) contains both nascent H and L strands and is heterogeneous in sedimentation and electrophoretic migration. Component A has characteristics consistent with a Cairns-type structure in which the L strand is the leading strand and the H strand is the lagging strand. The other new species (component B) has a nascent 2.5-kilobase linear L strand with a single discontinuity that mapped to either of two alternative origins located 180 degrees apart on the minicircle map. Component B could be repaired to a covalently closed form by Escherichia coli polymerase I and T4 ligase but not by T4 polymerase and T4 ligase. Even though component B has a single gap in one strand, it had an electrophoretic mobility on an agarose gel (minus ethidium bromide) similar to that of a supercoiled circle with three supertwists. Treatment of component B with topoisomerase II converted it to a form that comigrated with a nicked open circular form (replicative form II). These results indicate that component B is a knotted topoisomer of a kinetoplast DNA minicircle with a single gap in the L strand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号