首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The neutrophil azurophil granule constituent proteinase 3 (PR3) is the principal antigen for anti-neutrophil cytoplasmic antibodies (ANCA) in Wegener's granulomatosis. The conformation of the mature PR3 enzyme results from intracellular post-translational processing. The nascent molecule undergoes proteolytic cleavage of the amino-terminal signal peptide and activation dipeptide and of a carboxy-terminal peptide extension. The conformation of PR3 is stabilized by four disulfide bonds and, to a lesser extent, by asparagine-linked glycosylation. Most anti-neutrophil cytoplasmic antibodies directed against proteinase 3 (PR3-ANCA) recognize conformational epitopes. The expression of recombinant PR3 has provided a better understanding of the significance of the various intracellular processing steps for enzymatic activity and recognition by PR3-ANCA.  相似文献   

2.
The neutrophil azurophil granule constituent proteinase 3 (PR3) is the principal antigen for anti-neutrophil cytoplasmic antibodies (ANCA) in Wegener's granulomatosis. The conformation of the mature PR3 enzyme results from intracellular post-translational processing. The nascent molecule undergoes proteolytic cleavage of the amino-terminal signal peptide and activation dipeptide and of a carboxy-terminal peptide extension. The conformation of PR3 is stabilized by four disulfide bonds and, to a lesser extent, by asparagine-linked glycosylation. Most anti-neutrophil cytoplasmic antibodies directed against proteinase 3 (PR3-ANCA) recognize conformational epitopes. The expression of recombinant PR3 has provided a better understanding of the significance of the various intracellular processing steps for enzymatic activity and recognition by PR3-ANCA.  相似文献   

3.
Reactive antigenic epitopes on presumed autoantigens of biologic interest have been examined by many researchers. The central third complementarity-determining region (CDR3) residues of a human monoclonal anti-proteinase 3 (PR3) antibody contained many negatively charged aspartic acid residues, perhaps contributing to its reactivity with positively charged PR3 regions. Examination of four other human monoclonal anti-PR3 antibodies shows a number of negatively charged residues within their CDR3 regions. Mapping of segments of linear PR3-epitopes reacting with anti-neutrophil cytoplasmic antibodies (ANCA) demonstrated a preliminary estimate of structures contributing to antigenic determinants. T-cell epitopes on PR3 are reported in studies of chronic myeloid leukemia. These T-cell epitopes appear to be human leukocyte antigen (HLA) A2.1 restricted.  相似文献   

4.
Reactive antigenic epitopes on presumed autoantigens of biologic interest have been examined by many researchers. The central third complementarity-determining region (CDR3) residues of a human monoclonal anti-proteinase 3 (PR3) antibody contained many negatively charged aspartic acid residues, perhaps contributing to its reactivity with positively charged PR3 regions. Examination of four other human monoclonal anti-PR3 antibodies shows a number of negatively charged residues within their CDR3 regions. Mapping of segments of linear PR3-epitopes reacting with anti-neutrophil cytoplasmic antibodies (ANCA) demonstrated a preliminary estimate of structures contributing to antigenic determinants. T-cell epitopes on PR3 are reported in studies of chronic myeloid leukemia. These T-cell epitopes appear to be human leukocyte antigen (HLA) A2.1 restricted.  相似文献   

5.
Anti-neutrophil cytoplasmic antibodies (ANCA) have become important diagnostic markers of small vessel vasculitides characterized by focal necrotizing lesions of vessel walls and accumulation of lymphocytes and macrophages around the affected vessels. IgG class ANCA directed to proteinase 3 (PR3) of neutrophils and monocytes seem to be directly involved in the pathophysiology of vascular damage by causing excessive neutrophil activation and vessel wall destruction. PR3 and elastase are important players in the mechanisms of vascular necrosis. Methods of detecting ANCA have now been defined but are not uniformly used, even though clinical decisions heavily depend on correct ANCA results.  相似文献   

6.

Background

Genetic variants within the major histocompatibility complex (MHC) represent the strongest genetic susceptibility factors for primary sclerosing cholangitis (PSC). Identifying the causal variants within this genetic complex represents a major challenge due to strong linkage disequilibrium and an overall high physical density of candidate variants. We aimed to refine the MHC association in a geographically restricted PSC patient panel.

Methodology/Principal Findings

A total of 365 PSC cases and 368 healthy controls of Scandinavian ancestry were included in the study. We incorporated data from HLA typing (HLA-A, -B, -C, -DRB3, -DRB1, -DQB1) and single nucleotide polymorphisms across the MHC (n = 18,644; genotyped and imputed) alongside previously suggested PSC risk determinants in the MHC, i.e. amino acid variation of DRβ, a MICA microsatellite polymorphism and HLA-C and HLA-B according to their ligand properties for killer immunoglobulin-like receptors. Breakdowns of the association signal by unconditional and conditional logistic regression analyses demarcated multiple PSC associated MHC haplotypes, and for eight of these classical HLA class I and II alleles represented the strongest association. A novel independent risk locus was detected near NOTCH4 in the HLA class III region, tagged by rs116212904 (odds ratio [95% confidence interval] = 2.32 [1.80, 3.00], P = 1.35×10−11).

Conclusions/Significance

Our study shows that classical HLA class I and II alleles, predominantly at HLA-B and HLA-DRB1, are the main risk factors for PSC in the MHC. In addition, the present assessments demonstrated for the first time an association near NOTCH4 in the HLA class III region.  相似文献   

7.
《PloS one》2010,5(8)

Background

TGR5, the G protein-coupled bile acid receptor 1 (GPBAR1), has been linked to inflammatory pathways as well as bile homeostasis, and could therefore be involved in primary sclerosing cholangitis (PSC) a chronic inflammatory bile duct disease. We aimed to extensively investigate TGR5 sequence variation in PSC, as well as functionally characterize detected variants.

Methodology/Principal Findings

Complete resequencing of TGR5 was performed in 267 PSC patients and 274 healthy controls. Six nonsynonymous mutations were identified in addition to 16 other novel single-nucleotide polymorphisms. To investigate the impact from the nonsynonymous variants on TGR5, we created a receptor model, and introduced mutated TGR5 constructs into human epithelial cell lines. By using confocal microscopy, flow cytometry and a cAMP-sensitive luciferase assay, five of the nonsynonymous mutations (W83R, V178M, A217P, S272G and Q296X) were found to reduce or abolish TGR5 function. Fine-mapping of the previously reported PSC and UC associated locus at chromosome 2q35 in large patient panels revealed an overall association between the TGR5 single-nucleotide polymorphism rs11554825 and PSC (odds ratio  = 1.14, 95% confidence interval: 1.03–1.26, p = 0.010) and UC (odds ratio  = 1.19, 95% confidence interval 1.11–1.27, p = 8.5×10−7), but strong linkage disequilibrium precluded demarcation of TGR5 from neighboring genes.

Conclusions/Significance

Resequencing of TGR5 along with functional investigations of novel variants provided unique insight into an important candidate gene for several inflammatory and metabolic conditions. While significant TGR5 associations were detected in both UC and PSC, further studies are needed to conclusively define the role of TGR5 variation in these diseases.  相似文献   

8.

Background & Aims

Current guidelines recommend immunosuppressive treatment (IT) in patients with primary sclerosing cholangitis (PSC) and elevated aminotransferase levels more than five times the upper limit of normal and elevated serum IgG-levels above twice the upper limit of normal. Since there is no evidence to support this recommendation, we aimed to assess the criteria that guided clinicians in clinical practice to initiate IT in patients with previously diagnosed PSC.

Methods

This is a retrospective analysis of 196 PSC patients from seven German hepatology centers, of whom 36 patients had received IT solely for their liver disease during the course of PSC. Analyses were carried out using methods for competing risks.

Results

A simplified autoimmune hepatitis (AIH) score >5 (HR of 36, p<0.0001) and a modified histological activity index (mHAI) greater than 3/18 points (HR 3.6, p = 0.0274) were associated with the initiation of IT during the course of PSC. Of note, PSC patients who subsequently received IT differed already at the time of PSC diagnosis from those patients, who did not receive IT during follow-up: they presented with increased levels of IgG (p = 0.004) and more frequently had clinical signs of cirrhosis (p = 0.0002).

Conclusions

This is the first study which investigates the parameters associated with IT in patients with PSC in clinical practice. A simplified AIH score >5 and a mHAI score >3, suggesting concomitant features of AIH, influenced the decision to introduce IT during the course of PSC. In German clinical practice, the cutoffs used to guide IT may be lower than recommended by current guidelines.  相似文献   

9.

Background and Aim

Patients with primary sclerosing cholangitis (PSC) are at high risk for the development of cholangiocarcinoma (CC). Analysis of micro ribonucleic acid (MiRNA) patterns is an evolving research field in biliary pathophysiology with potential value in diagnosis and therapy. Our aim was to evaluate miRNA patterns in serum and bile of patients with PSC and/or CC.

Methods

Serum and bile from consecutive patients with PSC (n = 40 (serum), n = 52 (bile)), CC (n = 31 (serum), n = 19 (bile)) and patients with CC complicating PSC (PSC/CC) (n = 12 (bile)) were analyzed in a cross-sectional study between 2009 and 2012. As additional control serum samples from healthy individuals were analyzed (n = 12). The miRNA levels in serum and bile were determined with global miRNA profiling and subsequent miRNA-specific polymerase chain reaction-mediated validation.

Results

Serum analysis revealed significant differences for miR-1281 (p = 0.001), miR-126 (p = 0.001), miR-26a (p = 0.001), miR-30b (p = 0.001) and miR-122 (p = 0.034) between patients with PSC and patients with CC. All validated miRNAs were significantly lower in healthy individuals. MiR-412 (p = 0.001), miR-640 (p = 0.001), miR-1537 (p = 0.003) and miR-3189 (p = 0.001) were significantly different between patients with PSC and PSC/CC in bile.

Conclusions

Patients with PSC and/or CC have distinct miRNA profiles in serum and bile. Furthermore, miRNA concentrations are different in bile of patients with CC on top of PSC indicating the potential diagnostic value of these miRNAs.  相似文献   

10.
The glycosylphosphatidylinositol (GPI)-anchored neutrophil-specific receptor NB1 (CD177) presents the autoantigen proteinase 3 (PR3) on the membrane of a neutrophil subset. PR3-ANCA-activated neutrophils participate in small-vessel vasculitis. Since NB1 lacks an intracellular domain, we characterized components of the NB1 signaling complex that are pivotal for neutrophil activation. PR3-ANCA resulted in degranulation and superoxide production in the mNB1(pos)/PR3(high) neutrophils, but not in the mNB1(neg)/PR3(low) subset, whereas MPO-ANCA and fMLP caused similar responses. The NB1 signaling complex that was precipitated from plasma membranes contained the transmembrane receptor Mac-1 (CD11b/CD18) as shown by MS/MS analysis and immunoblotting. NB1 co-precipitation was less for CD11a and not detectable for CD11c. NB1 showed direct protein-protein interactions with both CD11b and CD11a by surface plasmon resonance analysis (SPR). However, when these integrins were presented as heterodimeric transmembrane proteins on transfected cells, only CD11b/CD18 (Mac-1)-transfected cells adhered to immobilized NB1 protein. This adhesion was inhibited by mAb against NB1, CD11b, and CD18. NB1, PR3, and Mac-1 were located within lipid rafts. In addition, confocal microscopy showed the strongest NB1 co-localization with CD11b and CD18 on the neutrophil. Stimulation with NB1-activating mAb triggered degranulation and superoxide production in mNB1(pos)/mPR3(high) neutrophils, and this effect was reduced using blocking antibodies to CD11b. CD11b blockade also inhibited PR3-ANCA-induced neutrophil activation, even when β2-integrin ligand-dependent signals were omitted. We establish the pivotal role of the NB1-Mac-1 receptor interaction for PR3-ANCA-mediated neutrophil activation.  相似文献   

11.
Today, exosome-related studies have become a focus in science and technology. Recently, three scientists won the Nobel Prize for determining the mechanisms of exosomal transport, making exosomes a promising biomarker system for disease diagnosis and treatment. This review provides a general introduction of exosomes and explores the recent progress on the function, application, isolation, and identification of exosomes as biomarkers in blood and other body fluids, especially in saliva. Detailed information of exosomal proteins and RNAs is discussed in the paper because of their ability to determine the function of exosomes. Due to their noninvasive assessment for quick and convenient diagnosis of diseases, salivary exosomes may well be promising biomarkers.  相似文献   

12.
The pathogenesis of systemic vasculitis is complex and is likely to involve many mechanisms. There is a growing body of evidence that T cells may contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Predominantly, T cells and monocytes are found in inflammatory infiltrates in patients with Wegener's granulomatosis (WG). The production of ANCA appears to be T-cell-dependent. T lymphocytes from the peripheral blood of patients with ANCA-associated vasculitis have been shown to proliferate in response to proteinase 3 (PR3). These and other findings outlined in this review indicate T-cell involvement, although further studies are still needed to elucidate the exact contribution of T cells to the pathogenesis of systemic vasculitis.  相似文献   

13.

Introduction

For both patients and the outpatient clinic the frequent follow-up visits after a resection of colorectal cancer (CRC) are time consuming and due to large patient numbers expensive. Therefore it is important to develop an effective non-invasive test for the detection of colorectal liver metastasis (CRLM) which could be used outside the hospital. The urine proteome is known to provide detailed information for monitoring changes in the physiology of humans. Urine collection is non-invasive and urine naturally occurring peptides (NOPs) have the advantage of being easily accessible without labour-intensive sample preparation. These advantages make it potentially useful for a quick and reliable application in clinical settings. In this study, we will focus on the identification and validation of urine NOPs to discriminate patients with CRLM from healthy controls.

Materials and Methods

Urine samples were collected from 24 patients with CRLM and 25 healthy controls. In the first part of the study, samples were measured with a nano liquid chromatography (LC) system (Thermo Fisher Scientific, Germaring, Germany) coupled on-line to a hybrid linear ion trap/Orbitrap mass spectrometer (LTQ-Orbitrap-XL, Thermo Fisher Scientific, Bremen, Germany). A discovery set was used to construct the model and consecutively the validation set, being independent from the discovery set, to check the acquired model. From the peptides which were selected, multiple reaction monitoring (MRM''s) were developed on a UPLC-MS/MS system.

Results

Seven peptides were selected and applied in a discriminant analysis a sensitivity of 84.6% and a specificity of 92.3% were established (Canonical correlation:0.797, Eigenvalue:1.744, F:4.49, p:0.005). The peptides AGPP(-OH)GEAGKP(-OH)GEQGVP(-OH)GDLGA P(-OH)GP and KGNSGEP(-OH)GAPGSKGDTGAKGEP(-OH)GPVG were selected for further quantitative analysis which showed a sensitivity of 88% and a specificity of 88%.

Conclusion

Urine proteomic analysis revealed two very promising peptides, both part from collagen type 1, AGPP(-OH)GEAGKP(-OH)GEQGVP(-OH)GDLGAP(-OH)GP and KGNSGEP(-OH)GAPGSKGDTGAKGEP(-OH)GPVG which could detect CRLM in a non-invasive manner.  相似文献   

14.
Plenty of studies have established that dysregulation of autophagy plays an essential role in cancer progression. The autophagy-related proteins have been reported to be closely associated with human cancer patients’ prognosis. We explored the expression dynamics and prognostic value of autophagy-related protein ULK1 by immunochemistry (IHC) method in two independent cohorts of nasopharygeal carcinoma (NPC) cases. The X-tile program was applied to determine the optimal cut-off value in the training cohort. This derived cutoff value was then subjected to analysis the association of ULK1 expression with patients’ clinical characteristics and survival outcome in the validation cohort and overall cases. High ULK1 expression was closely associated with aggressive clinical feature of NPC patients. Furthermore, high expression of ULK1 was observed more frequently in therapeutic resistant group than that in therapeutic effective group. Our univariate and multivariate analysis also showed that higher ULK1 expression predicted inferior disease-specific survival (DSS) (P<0.05). Consequently, a new clinicopathologic prognostic model with 3 poor prognostic factors (ie, ULK1 expression, overall clinical stage and therapeutic response) could significantly stratify risk (low, intermediate and high) for DSS in NPC patients (P<0.001). These findings provide evidence that, the examination of ULK1 expression by IHC method, could serve as an effective additional tool for predicting therapeutic response and patients’ survival outcome in NPC patients.  相似文献   

15.
In pancreatic cancer, the incidence and mortality curves coincide. One major reason for this high mortality rate in pancreatic ductal adenocarcinoma (PDAC) patients is the dearth of effective diagnostic, prognostic, and disease-monitoring biomarkers. Unfortunately, existing tumor markers, as well as current imaging modalities, are not sufficiently sensitive and/or specific for early-stage diagnosis. There is, therefore, an urgent need for improved serum markers of the disease. Herein, we performed Orbitrap® mass spectrometry proteomic analysis of four PDAC tissues and their adjacent benign tissues and identified a total of 2190 nonredundant proteins. Sixteen promising candidates were selected for further scrutiny using a systematic scoring algorithm. Our preliminary serum verification of the top four candidates (DSP, LAMC2, GP73, and DSG2) in 20 patients diagnosed with pancreatic cancer and 20 with benign pancreatic cysts, showed a significant (p < 0.05) elevation of LAMC2 in pancreatic cancer serum. Extensive validation of LAMC2 in healthy, benign, and PDAC sera from geographically diverse cohorts (n = 425) (Japan, Europe, and USA) demonstrated a significant increase in levels in early-stage PDAC compared with benign diseases. The sensitivity of LAMC2 was comparable to CA19.9 in all data sets, with an AUC value greater than 0.85 in discriminating healthy patients from early-stage PDAC patients. LAMC2 exhibited diagnostic complementarity with CA19.9 by showing significant (p < 0.001 in two out of three cohorts) elevation in PDAC patients with clinically low CA19.9 levels.Pancreatic ductal adenocarcinoma (PDAC)1 is one of the most devastating cancers and the fourth leading cause of cancer-related deaths in North America (1). Ninety-five percent of patients will not survive beyond five years; this high mortality rate is primarily attributed to the lack of effective diagnostic techniques and treatment regimens. The hallmark features of pancreatic cancer (PC) are late presentation and aggressive metastatic progression (2, 3). The National Cancer Institute statistics estimate that approximately $1.9 billion is being spent in the United States alone each year on PC diagnosis and treatment. PDAC is classified into resectable (∼10–20%), locally advanced unresectable (∼30–40%), and metastatic (∼50%) (3). PDAC diagnosed at resectable stage can possibly be cured with complete surgical removal. This could improve the survival rates and considerably lower treatment costs. It is projected that 20–40% of patients with resectable PDAC survive more than five years after complete surgical removal, highlighting the importance of early-stage diagnosis. Unfortunately, carbohydrate antigen 19–9 (CA19.9), the current standard serum tumor marker for PDAC, has certain limitations as an early detection biomarker (its sensitivity for small tumors {<3 cm} is ∼50% and it is significantly elevated in many benign conditions (e.g. biliary obstruction, hepatic cirrhosis, chronic pancreatitis)) (4, 5). In light of the scarcity of other, more reliable markers, CA19.9 is currently used in the clinic as a prognostic and surveillance marker. Undoubtedly, the need for a more reliable consistent biomarker (or biomarker panel) for early PDAC diagnosis remains unmet. In pursuit of novel PDAC biomarker candidates, we have previously delineated the proteomes of malignant pancreatic ascitic fluids, pools of pancreatic juice, and pancreatic cancer cell lines (BxPC3, CAPAN, CFPAC1, MIA-Paca2, PANC1, and SU.86.86). We identified a panel of five potential candidate biomarkers, which, in combination, slightly outperformed CA19.9 in a pilot verification study (40 individuals; 20 healthy, and 20 PDAC) (6).From a different perspective, in the current study, we deployed a comparative quantitative tissue proteomic methodology to compare the proteome of malignant pancreatic tissues with that of their adjacent normal counterparts. A total of 2190 nonredundant proteins were identified, which were further scrutinized using a systematic scoring algorithm based on their quantified cancer-versus-normal ratios, on their identification in malignant pancreatic ascites fluid, on their cancer-specific nature, and on their tissue-expression profiles. Our analysis resulted in sixteen promising candidate biomarkers, which fulfilled our criteria and selected for further validation studies. In a multistep validation approach, the selected candidates were first verified in serum samples obtained from 20 patients with benign pancreatic diseases and 20 patients with pancreatic cancer, using commercially available ELISA kits. The best candidate (LAMC2) was further tested in three geographically diverse cohorts from Germany, Japan, and the US composed of 435 serum samples from healthy, benign, and early and late stage cancer patients. Our approach brought to light a previously unknown, promising PDAC candidate biomarker, LAMC2.  相似文献   

16.
The pathogenesis of systemic vasculitis is complex and is likely to involve many mechanisms. There is a growing body of evidence that T cells may contribute to the pathogenesis of anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitides. Predominantly, T cells and monocytes are found in inflammatory infiltrates in patients with Wegener's granulomatosis (WG). The production of ANCA appears to be T-cell-dependent. T lymphocytes from the peripheral blood of patients with ANCA-associated vasculitis have been shown to proliferate in response to proteinase 3 (PR3). These and other findings outlined in this review indicate T-cell involvement, although further studies are still needed to elucidate the exact contribution of T cells to the pathogenesis of systemic vasculitis.  相似文献   

17.
Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated.  相似文献   

18.
章森桂 《古生物学报》2019,58(3):281-292
40年前于1979年,在苏州召开的中国古生物学会第三届全国会员代表大会暨第12次学术年会盛况空前,在中国古生物学发展史上具有非常重要的意义。它标志着中国古生物学研究步入发展的新阶段,优秀成果大量涌现、学术交流频繁;此后的数年里学会活动空前活跃、会员人数大幅增加,从此学会活动正规化;中国古生物学界重新回到国际大家庭,对外交流频繁。  相似文献   

19.
20.
Halogeometricum borinquense Montalvo-Rodríguez et al. 1998 is the type species of the genus, and is of phylogenetic interest because of its distinct location between the halobacterial genera Haloquadratum and Halosarcina. H. borinquense requires extremely high salt (NaCl) concentrations for growth. It can not only grow aerobically but also anaerobically using nitrate as electron acceptor. The strain described in this report is a free-living, motile, pleomorphic, euryarchaeon, which was originally isolated from the solar salterns of Cabo Rojo, Puerto Rico. Here we describe the features of this organism, together with the complete genome sequence, and annotation. This is the first complete genome sequence of the halobacterial genus Halogeometricum, and this 3,944,467 bp long six replicon genome with its 3937 protein-coding and 57 RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号