首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The p53 protein is kept labile under normal conditions. This regulation is governed largely by its major negative regulator, Mdm2. In response to stress however, p53 accumulates and becomes activated. For this to occur, the inhibitory effects of Mdm2 have to be neutralized. Here we investigated the role of the promyelocytic leukemia protein (PML) in the activation of p53 in response to stress. We found that PML is critical for the accumulation of p53 in response to DNA damage under physiological conditions. PML protects p53 from Mdm2-mediated ubiquitination and degradation, and from inhibition of apoptosis. PML neutralizes the inhibitory effects of Mdm2 by prolonging the stress-induced phosphorylation of p53 on serine 20, a site of the checkpoint kinase 2 (Chk2). PML recruits Chk2 and p53 into the PML nuclear bodies and enhances p53/Chk2 interaction. Our results provide a novel mechanistic explanation for the cooperation between PML and p53 in response to DNA damage.  相似文献   

3.
The Murine double-minute clone 2 (Mdm2) onco-protein is the principal regulator of the tumour suppressor, p53. Mdm2 acts as an E3-type ubiquitin ligase that mediates the ubiquitylation and turnover of p53 under normal, unstressed circumstances. In response to cellular stress, such as DNA damage, the Mdm2–p53 interaction is disrupted. Part of the mechanism of uncoupling p53 from Mdm2-mediated degradation involves hypo-phosphorylation of a cluster of phosphorylated serine residues in the central acidic domain of Mdm2. Here, we show that two of the residues within this domain that are phosphorylated in vivo, Ser-260 and Ser-269, are phosphorylated by CK2 in vitro. Treatment of cells with the CK2 inhibitor, 4,5,6,7-tetrabromo-2-azabenzimidazole (TBB), leads to the induction of p53 and downstream targets of p53 including Mdm2 itself and p21. These data are consistent with the idea that CK2-mediated phosphorylation of Mdm2 may regulate Mdm2-mediated p53 turnover.  相似文献   

4.
5.
Direct interactions between HIF-1 alpha and Mdm2 modulate p53 function   总被引:22,自引:0,他引:22  
  相似文献   

6.
Most living organisms exhibit circadian rhythms that are generated by endogenous circadian clocks, the master one being present in the suprachiasmatic nuclei (SCN). Output signals from the SCN are believed to transmit standard circadian time to peripheral tissue through sympathetic nervous system and humoral routes. Therefore, the authors examined the expression of clock genes following treatment with the β-adrenergic receptor agonist, isoprenaline, or the synthetic glucocorticoid, dexamethasone, in cultured human osteoblast SaM-1 cells. Cells were treated with 10(-6) M isoprenaline or 10(-7) M dexamethasone for 2?h and gene expressions were determined using real-time polymerase chain reaction (PCR) analysis. Treatment with isoprenaline or dexamethasone induced the circadian expression of clock genes human period 1 (hPer1), hPer2, hPer3, and human brain and muscle Arnt-like protein 1 (hBMAL1). Isoprenaline or dexamethasone treatment immediately increased hPer1 and hPer2 and caused circadian oscillation of hPer1 and hPer2 with three peaks within 48?h. hPer3 expression had one peak after isoprenaline or dexamethasone treatment. hBMAL expression had two peaks after isoprenaline or dexamethasone treatment, the temporal pattern being in antiphase to that of the other clock genes. Dexamethasone treatment delayed the oscillation of all clock genes for 2-6?h compared with isoprenaline treatment. The authors also examined the expression of osteoblast-related genes hα-1 type I collagen (hCol1a1), halkaline phosphatase (hALP), and hosteocalcin (hOC). Isoprenaline induced oscillation of hCol1a1, but not hALP and hOC. On the other hand, dexamethasone induced oscillation of hCol1a1 and hALP, but not hOC. Isoprenaline up-regulated hCol1a1 expression, but dexamethasone down-regulated hCol1a1 and hALP expression in the first phase.  相似文献   

7.
8.
Wang P  Gao H  Ni Y  Wang B  Wu Y  Ji L  Qin L  Ma L  Pei G 《The Journal of biological chemistry》2003,278(8):6363-6370
Oncoprotein Mdm2 is a master negative regulator of the tumor suppressor p53 and has been recently shown to regulate the ubiquitination of beta-arrestin 2, an important adapter and scaffold in signaling of G-protein-coupled receptors (GPCRs). However, whether beta-arrestin 2 has any effect on the function of Mdm2 is still unclear. Our current results demonstrated that the binding of Mdm2 to beta-arrestin 2 was significantly enhanced by stimulation of GPCRs. Activation of GPCRs led to formation of a ternary complex of Mdm2, beta-arrestin 2, and GPCRs and thus recruited Mdm2 to GPCRs at plasma membrane. Moreover, the binding of beta-arrestin 2 to Mdm2 suppressed the self-ubiquitination of Mdm2 and consequently reduced the Mdm2-mediated p53 degradation and ubiquitination. Further experiments revealed that overexpression of beta-arrestin 2 enhanced the p53-mediated apoptosis while suppression of endogenous beta-arrestin 2 expression by RNA interference technology considerably attenuated the p53-mediated apoptosis. Our study thus suggests that beta-arrestin 2 may serve as a cross-talk linker between GPCR and p53 signaling pathways.  相似文献   

9.
10.
11.
Time-dependent variations in clock gene expression have recently been observed in mouse hematopoietic cells, but the activity of these genes in human bone marrow (BM) has so far not been investigated. Since such data can be of considerable clinical interest for monitoring the dynamics in stem/progenitor cells, the authors have studied mRNA expression of the clock genes hPer1 , hPer2, hCry1, hCry2, hBmal1, hRev-erb alpha, and hClock in human hematopoietic CD34-positive (CD34( +)) cells. CD34(+) cells were isolated from the BM samples obtained from 10 healthy men at 6 times over 24 h. In addition, clock gene mRNA expression was analyzed in the whole BM in 3 subjects. Rhythms in serum cortisol, growth hormone, testosterone, and leukocyte counts documented that subjects exhibited standardized circadian patterns. All 7 clock genes were expressed both in CD34(+) cells and the whole BM, with some differences in magnitude between the 2 cell populations. A clear circadian rhythm was shown for hPer1, hPer2, and hCry2 expression in CD34(+) cells and for hPer1 in the whole BM, with maxima from early morning to midday. Similar to mouse hematopoietic cells, h Bmal1 was not oscillating rhythmically. The study demonstrates that clock gene expression in human BM stem/progenitor cells may be developmentally regulated, with strong or weaker circadian profiles as compared to those reported in other mature tissues.  相似文献   

12.
Li L  Cui D  Zheng SJ  Lou H  Tang J 《DNA Repair》2012,11(2):112-119
Mdm2 is a critical negative regulator of the p53 tumor suppressor and also has many p53-independent functions. Deregulation of Mdm2 is closely associated with tumorigenesis. However, how Mdm2 is regulated in response to various stresses is not well understood. In this study, we found that Mdm2 was stabilized and upregulated upon Actinomycin D (ActD) treatment in the p53-deficient H1299 cell line. This Mdm2 upregulation was not dependent on the ribosomal protein L11, an essential player in ribosomal stress-induced p53 activation, but did require a NEDDylation-dependent mechanism. We further demonstrated that the ActD-induced Mdm2 stabilization may be modulated by the cell growth signaling, and that knockdown of Mdm2 enhanced ActD-induced cell death in H1299 cells. These results suggested a role of Mdm2 in the ribosomal stress response in the p53 deficient cells, which could be exploited in therapeutic use for treating cancers harboring p53 mutations.  相似文献   

13.
Respiratory syncytial virus (RSV) is a clinically important pathogen. It preferentially infects airway epithelial cells causing bronchiolitis in infants, exacerbations in patients with obstructive lung disease, and life-threatening pneumonia in the immunosuppressed. The p53 protein is a tumor suppressor protein that promotes apoptosis and is tightly regulated for optimal cell growth and survival. A critical negative regulator of p53 is murine double minute 2 (Mdm2), an E3 ubiquitin ligase that targets p53 for proteasome degradation. Mdm2 is activated by phospho-Akt, and we previously showed that RSV activates Akt and delays apoptosis in primary human airway epithelial cells. In this study, we explore further the mechanism by which RSV regulates p53 to delay apoptosis but paradoxically enhance inflammation. We found that RSV activates Mdm2 1-6 h after infection resulting in a decrease in p53 6-24 h after infection. The p53 down-regulation correlates with increased airway epithelial cell longevity. Importantly, inhibition of the PI3K/Akt pathway blocks the activation of Mdm2 by RSV and preserves the p53 response. The effects of RSV infection are antagonized by Nutlin-3, a specific chemical inhibitor that prevents the Mdm2/p53 association. Nutlin-3 treatment increases endogenous p53 expression in RSV infected cells, causing earlier cell death. This same increase in p53 enhances viral replication and limits the inflammatory response as measured by IL-6 protein. These findings reveal that RSV decreases p53 by enhancing Akt/Mdm2-mediated p53 degradation, thereby delaying apoptosis and prolonging survival of airway epithelial cells.  相似文献   

14.
15.
Acetylation is indispensable for p53 activation   总被引:1,自引:0,他引:1  
Tang Y  Zhao W  Chen Y  Zhao Y  Gu W 《Cell》2008,133(4):612-626
The activation of the tumor suppressor p53 facilitates the cellular response to genotoxic stress; however, the p53 response can only be executed if its interaction with its inhibitor Mdm2 is abolished. There have been conflicting reports on the question of whether p53 posttranslational modifications, such as phosphorylation or acetylation, are essential or only play a subtle, fine-tuning role in the p53 response. Thus, it remains unclear whether p53 modification is absolutely required for its activation. We have now identified all major acetylation sites of p53. Although unacetylated p53 retains its ability to induce the p53-Mdm2 feedback loop, loss of acetylation completely abolishes p53-dependent growth arrest and apoptosis. Notably, acetylation of p53 abrogates Mdm2-mediated repression by blocking the recruitment of Mdm2 to p53-responsive promoters, which leads to p53 activation independent of its phosphorylation status. Our study identifies p53 acetylation as an indispensable event that destabilizes the p53-Mdm2 interaction and enables the p53-mediated stress response.  相似文献   

16.
17.
Genes and components of the circadian clock may represent relevant drug targets for diseases involving circadian dysfunctions. By exploiting an established cell line derived from human retinal pigment epithelium (HRPE), the cell constituting the blood-retinal barrier that is essential to maintain the visual functions of the sensorineural retina, we showed serum-shock induction of rhythmic changes in forskolin-evoked adenylyl cyclase (AC) activity. In the presence of Ca2+ and protein kinase A, the forskolin-induced AC activity is significantly, but not completely inhibited, suggesting the involvement of both Ca2+-sensitive and Ca2+-insensitive AC isoforms in the regulation of circadian rhythmicity in these cells. Semi-quantitative RT-PCR showed circadian profile in the expression of three AC isoforms, the Ca2+-inhibitable AC5 and AC6 and the Ca2+-insensitive AC7, and the clock genes hPer1 and hPer2. Our results demonstrate for the first time circadian rhythmicity in a human cell line, identifying the isoforms involved in the circadian profile of AC activity and showing a rhythmicity of the clock gene mRNA expression in these cells. Therefore, the results reported here provide evidence for an intertwine between AC/[Ca2+]i signalling pathways and Per genes in the HRPE circadian clockwork.  相似文献   

18.
Mdm2 is an E3 ubiquitin ligase that promotes its own ubiquitination and also ubiquitination of the p53 tumour suppressor. In a bacterial two-hybrid screen, using Mdm2 as bait, we identified an Mdm2-interacting peptide that bears sequence similarity to the deubiquitinating enzyme USP2a. We have established that full-length USP2a associates with Mdm2 in cells where it can deubiquitinate Mdm2 while demonstrating no deubiquitinating activity towards p53. Ectopic expression of USP2a causes accumulation of Mdm2 in a dose-dependent manner and consequently promotes Mdm2-mediated p53 degradation. This differs from the behaviour of HAUSP, which deubiquitinates p53 in addition to Mdm2 and thus protects p53 from Mdm2-mediated degradation. We further demonstrate that suppression of endogenous USP2a destabilises Mdm2 and causes accumulation of p53 protein and activation of p53. Our data identify the deubiquitinating enzyme USP2a as a novel regulator of the p53 pathway that acts through its ability to selectively target Mdm2.  相似文献   

19.
20.
Patients undergoing surgery often develop symptoms of circadian rhythm disorders such as insomnia or delirium. However, the effect of surgery on the biological clock remains unknown. The present study examines the expression of clock genes in peripheral blood mononuclear cells (PBMCs) and measures plasma hormone concentrations in patients with esophageal cancer and early gastric cancer who underwent surgery. Six blood samples per day were collected from 9 patients with esophageal cancer before and after esophagectomy and from 9 patients with early gastric cancer before and after laparoscopy-assisted distal gastrectomy (LADG). The expression profiles of hPer1 and hPer2 mRNAs in PBMCs were determined by real-time RT-PCR. Plasma melatonin and cortisol concentrations were measured by radioimmunoassay. Plasma melatonin levels decreased in both groups throughout the day and plasma cortisol levels changed after surgery. The acrophase of clock gene expression was altered after surgery as follows: hPer1, from 6:19+/-1:50 to 13:59+/-0:59 (p=0.0003) and from 7:47+/-1:27 to 12:33+/-1:30 (p=0.0043) and hPer2, from 5:01+/-2:59 to 19:30+/-2:15 (p<0.0001) and from 6:49+/-1:59 to 13:39+/-3:06 (p=0.0171) in patients with esophageal and early gastric cancer, respectively. The post-operative phase change of hPer2 was more prominent after esophagectomy than after LADG. Our results suggest that surgical stress affects the peripheral clock as well as endogenous hormones in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号