首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Pulmonary infection by Mycobacterium tuberculosis (Mtb) involves the invasion of alveolar epithelial cells (AECs). We used Mitotracker Red® to assess changes in mitochondrial morphology/distribution and mass from 6 to 48 h post infection (hpi) by confocal microscopy and flow cytometry in Mtb-infected A549 type II AECs. During early infection there was no effect on mitochondrial morphology, however, by 48 hpi mitochondria appeared fragmented and concentrated around the nucleus. In flow cytometry experiments, the median fluorescence intensity (MFI) decreased by 44% at 48 hpi; double-labelling using antibodies to the integral membrane protein COXIV revealed that these changes were due to a decrease in mitochondrial mass. These changes did not occur with the apathogenic strain, Mycobacterium bovis BCG. ESAT-6 is a virulence factor present in Mtb Erdman but lacking in M. bovis BCG. We performed similar experiments using Mtb Erdman, an ESAT-6 deletion mutant and its complement. MFI decreased at 48 hpi in the parent and complemented strains versus uninfected controls by 52% and 36% respectively; no decrease was detected in the deletion mutant. These results indicate an involvement of ESAT-6 in the perturbation of mitochondria induced by virulent Mtb in AECs and suggest mitophagy may play a role in the infection process.  相似文献   

2.

Background

Early secretory antigenic target-6 (ESAT-6) and culture filtrate protein-10 (CFP-10) are co-secreted proteins of Mycobacterium tuberculosis complex mycobacteria (includes M. bovis, the zoonotic agent of bovine tuberculosis) involved in phagolysosome escape of the bacillus and, potentially, in the efficient induction of granulomas. Upon tuberculosis infection, multi-nucleate giant cells are elicited, likely as a response aimed at containing mycobacteria. In tissue culture models, signal regulatory protein (SIRP)α (also referred to as macrophage fusion receptor or CD172a) is essential for multi-nucleate giant cell formation.

Methodology/Principal Findings

In the present study, ESAT-6/CFP-10 complex and SIRPα interactions were evaluated with samples obtained from calves experimentally infected with M. bovis. Peripheral blood CD172a+ (SIRPα-expressing) cells from M. bovis-infected calves proliferated upon in vitro stimulation with ESAT-6/CFP-10 (either as a fusion protein or a peptide cocktail), but not with cells from animals receiving M. bovis strains lacking ESAT-6/CFP-10 (i.e, M. bovis BCG or M. bovis ΔRD1). Sorted CD172a+ cells from these cultures had a dendritic cell/macrophage morphology, bound fluorescently-tagged rESAT-6:CFP-10, bound and phagocytosed live M. bovis BCG, and co-expressed CD11c, DEC-205, CD44, MHC II, CD80/86 (a subset also co-expressed CD11b or CD8α). Intradermal administration of rESAT-6:CFP-10 into tuberculous calves elicited a delayed type hypersensitive response consisting of CD11c+, CD172a+, and CD3+ cells, including CD172a-expressing multi-nucleated giant cells.

Conclusions/Significance

These findings demonstrate the ability of ESAT-6/CFP-10 to specifically expand CD172a+ cells, bind to CD172a+ cells, and induce multi-nucleated giant cells expressing CD172a.  相似文献   

3.
4.
Despite its relatively poor efficacy, Bacillus Calmette-Guérin (BCG) has been used as a tuberculosis (TB) vaccine since its development in 1921. BCG induces robust T helper 1 (Th1) immune responses but, for many individuals, this is not sufficient for host resistance against Mycobacterium tuberculosis (M. tb) infection. Here we provide evidence that early secreted antigenic target protein 6 (ESAT-6), expressed by the virulent M. tb strain H37Rv but not by BCG, promotes vaccine-enhancing Th17 cell responses. These activities of ESAT-6 were dependent on TLR-2/MyD88 signalling and involved IL-6 and TGF-β production by dendritic cells. Thus, animals that were previously infected with H37Rv or recombinant BCG containing the RD1 region (BCG::RD1) exhibited improved protection upon re-challenge with virulent H37Rv compared with mice previously infected with BCG or RD1-deficient H37Rv (H37RvΔRD1). However, TLR-2 knockout (TLR-2-/-) animals neither showed Th17 responses nor exhibited improved protection in response to immunization with H37Rv. Furthermore, H37Rv and BCG::RD1 infection had little effect on the expression of the anti-inflammatory microRNA-146a (miR146a) in dendritic cells (DCs), whereas BCG and H37RvΔRD1 profoundly induced its expression in DCs. Consistent with these findings, ESAT-6 had no effect on miR146a expression in uninfected DCs, but dramatically inhibited its upregulation in BCG-infected or LPS-treated DCs. Collectively, our findings indicate that, in addition to Th1 immunity induced by BCG, RD1/ESAT-6-induced Th17 immune responses are essential for optimal vaccine efficacy.  相似文献   

5.

Background:

Mycobacterium (M.) bovis is the agent of bovine tuberculosis (TB) in a range of animal species, including humans. Recent advances in immunology and the molecular biology of Mycobacterium have allowed identification of a large number of antigens with the potential for the development of a new TB vaccine. The ESAT-6 and CFP-10 proteins of M. bovis are important structural and functional proteins known to be important immunogens.

Methods:

In the current study, the DNAs encoding these genes were utilized in the construction of pcDNA 3.1+/ESAT-6 and pcDNA3.1+/CFP-10 plasmids. After intramuscular injection of BALB/c mice with these plasmids, ESAT-6 and CFP-10 mRNA expression was assessed by RT-PCR. Mice were inoculated and boosted with the plasmids to evaluate their effects on lymphocyte proliferation.

Results:

Our results indicate the plasmids are expressed at the RNA level and can induce lymphocyte proliferation.

Conclusion:

Further study is needed to characterize the effect of these antigens on the immune system and determine whether they are effective vaccine candidates against M. bovis. Key Words: Mycobacterium bovis, DNA vaccine, ESAT-6, CFP-10, PPD, Proliferation assay, BALB/c mice  相似文献   

6.
Recombinant BCG strain that secretes the chimaeric protein of Ag85B and ESAT-6 has been demonstrated to augment Th1 immune response in C57BL/6 mice. In this paper, we studied the immunostimulatory activity of the recombinant BCG strains in vitro and found out that rBCG-AN-E-AC activated THP-1 cells and induced higher expression levels of CD86, CD80, CD40 and HLA-DR, especially increased the ratio of CD86/CD80. Likewise, rBCG-AN-E-AC infection was able to stimulate an increase in TNF-α production of macrophages. Moreover, rBCG-AN-E-AC up-regulated the expression of EFHD2, ACTB and ACTG1 in the macrophages and improved the ability of antigen presentation and the CD8+ T-cells immune response. Taken together, this rBCG-AN-E-AC strain enhanced the immunostimulatory activity of human macrophages and could be a potential vaccine against Mycobacterium tuberculosis.  相似文献   

7.
Phenotypic screening led to the identification of calcimycin as a potent inhibitor of Mycobacterium bovis BCG (M. bovis BCG) growth in vitro and in THP-1 cells. In the present study, we aim to decipher the mechanism of antimycobacterial activity of calcimycin. We noticed that treatment with calcimycin led to up-regulation of different autophagy markers like Beclin-1, autophagy-related gene (Atg) 7, Atg 3 and enhanced microtubule-associated protein 1A/1B-light chain 3-I (LC3-I) to LC3-II conversion in macrophages. This calcimycin-mediated killing of intracellular M. smegmatis and M. bovis BCG was abrogated in the presence of 3-methyladenine (3-MA). We also demonstrate that calcimycin binding with purinergic receptor P2X7 (P2RX7) led to increase in intracellular calcium level that regulates the extracellular release of ATP. ATP was able to regulate calcimycin-induced autophagy through P2RX7 in an autocrine fashion. Blocking of either P2RX7 expression by 1-[N,O-bis(5-Isoquinolinesulfonyl)-N-methyl-l-tyrosyl]-4-phenylpiperazine (KN-62) or reducing intracellular calcium levels by 1,2-Bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid tetra (acetoxy-methyl) ester (BAPTA-AM) abrogated the antimycobacterial activity of calcimycin. Taken together, these results showed that calcimycin exerts its antimycobacterial effect by regulating intracellular calcium-dependent ATP release that induces autophagy in a P2RX7 dependent manner.  相似文献   

8.
9.
In both humans and animals, controversy exists concerning the duration of protection induced by BCG vaccine against tuberculosis (TB) and whether revaccination enhances protection. A long-term study was undertaken to determine whether BCG-vaccinated calves would be protected against challenge with Mycobacterium bovis 2½ years after vaccination and to determine the effect of revaccination after 2 years. Seventy–nine calves were divided into five groups (n = 15–17 calves/group) with four of the groups vaccinated subcutaneously with 105 CFU of BCG Danish at 2–4 weeks of age and the fifth group serving as non-vaccinated controls. Three of the four BCG-vaccinated groups were revaccinated 2 years after the initial vaccination. One BCG-vaccinated group was revaccinated with BCG. A second group was vaccinated subcutaneously with a TB protein vaccine consisting of biopolyester particles (Biobeads) displaying two mycobacterial proteins, ESAT-6 and Antigen 85A, mixed with an adjuvant. A third group was vaccinated with TB proteins from M. bovis culture filtrate, mixed with an adjuvant. Twenty-three weeks after the BCG revaccination, all animals were challenged endotracheally with virulent M. bovis and a further 13 weeks later, animals were killed and necropsied to determine protection against TB. The BCG-vaccinated animals produced positive tuberculin caudal fold intradermal (15 of 62 animals) and IFN-γ TB test responses (six of 62 animals) at 6 months after vaccination, but not at subsequent time-points compared to the non-vaccinated animals. Calves receiving a single vaccination with BCG vaccine 2½ years prior to challenge were not protected against TB, while those revaccinated with BCG 2 years after the initial vaccination displayed significant reductions in lung and pulmonary lymph node lesion scores compared to the non-vaccinated animals. In contrast, no reduction in lesion scores was observed in the animals revaccinated with the TB protein vaccines with their immune responses biased towards induction of antibody.  相似文献   

10.
Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin (BCG) alter the maturation of their phagosomes and reside within a compartment that resists acidification and fusion with lysosomes. To define the molecular composition of this compartment, we developed a novel method for obtaining highly purified phagosomes from BCG-infected human macrophages and analyzed the phagosomes by Western immunoblotting and mass spectrometry-based proteomics. Our purification procedure revealed that BCG grown on artificial medium becomes less dense after growth in macrophages. By Western immunoblotting, LAMP-2, Niemann-Pick protein C1, and syntaxin 3 were readily detectable on the BCG phagosome but at levels that were lower than on the latex bead phagosome; flotillin-1 and the vacuolar ATPase were barely detectable on the BCG phagosome but highly enriched on the latex bead phagosome. Immunofluorescence studies confirmed the scarcity of flotillin on BCG phagosomes and demonstrated an inverse correlation between bacterial metabolic activity and flotillin on M. tuberculosis phagosomes. By mass spectrometry, 447 human host proteins were identified on BCG phagosomes, and a partially overlapping set of 289 human proteins on latex bead phagosomes was identified. Interestingly, the majority of the proteins identified consistently on BCG phagosome preparations were also identified on latex bead phagosomes, indicating a high degree of overlap in protein composition of these two compartments. It is likely that many differences in protein composition are quantitative rather than qualitative in nature. Despite the remarkable overlap in protein composition, we consistently identified a number of proteins on the BCG phagosomes that were not identified in any of our latex bead phagosome preparations, including proteins involved in membrane trafficking and signal transduction, such as Ras GTPase-activating-like protein IQGAP1, and proteins of unknown function, such as FAM3C. Our phagosome purification procedure and initial proteomics analyses set the stage for a quantitative comparative analysis of mycobacterial and latex bead phagosome proteomes.Mycobacterium tuberculosis, the etiological agent of tuberculosis, is a facultative intracellular bacterium. In human macrophages, M. tuberculosis resides in a membrane-bound phagosomal compartment that resists fusion with lysosomes and is only mildly acidified (15). In previous studies, using the cryosection immunogold technique, we have found that the M. tuberculosis phagosome exhibits delayed clearance of major histocompatability complex class I molecules and relatively weak staining for lysosomal membrane glycoproteins CD63, LAMP-1,1 and LAMP-2 and the lysosomal acid protease cathepsin D (610). Studies by other investigators have also demonstrated that M. tuberculosis and other mycobacterial species, including Mycobacterium bovis BCG, reside in phagosomes that resist acidification, are less mature, and less fusogenic with lysosomes than phagosomes containing inert particles (1113). These results are consistent with the hypothesis that M. tuberculosis and M. bovis BCG retard the maturation of their phagosomes along the endolysosomal pathway and reside in a compartment that has not matured fully to a phagolysosome (7). Although the phagosomes of latex beads have been subjected to detailed proteomics analysis by Desjardins and co-workers (14), a detailed proteomics study of the M. bovis BCG phagosome has not been reported previously.We describe in this study a novel method for the purification of the BCG phagosome from infected human macrophages, a detailed proteomics analysis of the BCG phagosome, and a comparison of the phagosome with latex bead phagosomes isolated from human macrophages. This study is the first comprehensive proteomics study of the M. bovis BCG phagosome and the first mass spectrometry-based proteomics study of the latex bead phagosome in human macrophages. We showed by Western immunoblotting that, relative to latex bead phagosomes, the BCG phagosome is relatively depleted in LAMP-2, NPC1, flotillin-1, vATPase, and syntaxin 3. Remarkably, by mass spectrometry, we documented a high degree of overlap in the set of proteins on BCG and latex bead phagosomes but also noteworthy differences. Novel proteins detected on the BCG phagosome but not on the latex bead phagosome include CD44, intercellular adhesion molecule 1, protein FAM3C, Ral-A/Ral-B, stress-induced phosphoprotein 1, band 4.1-like protein 3, septin-7, Ras GTPase-activating protein-like protein IQGAP1, Rab-6A, erlin-2, and tumor protein D54. Conversely, proteins identified on latex bead phagosomes but not on the BCG phagosome are β-galactosidase and sialate O-acetylesterase.  相似文献   

11.
Development of activated tumoricidal macrophages following Mycobacterium bovis, strain BCG infection in vivo or lymphokine treatment in vitro was examined with more than 20 mouse strains. Peritoneal macrophages from 8 of 22 strains failed to develop tumoricidal capacity by 7 days after intraperitoneal BCG infection. Macrophages from 6 of 6 in vivo nonresponder strains also failed to develop tumoricidal capacity after in vitro treatment with lymphokines. Identification of nonresponder mouse strains should provide a useful resource for analysis of intermediary reactions in macrophage activation.  相似文献   

12.
Bovine tuberculosis (bTB) is a chronic disease of cattle caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex group of bacteria. Vaccination of cattle might offer a long-term solution for controlling the disease and priority has been given to the development of a cattle vaccine against bTB. Identification of biomarkers in tuberculosis research remains elusive and the goal is to identify host correlates of protection. We hypothesized that by studying global gene expression we could identify in vitro predictors of protection that could help to facilitate vaccine development. Calves were vaccinated with BCG or with a heterologous BCG prime adenovirally vectored subunit boosting protocol. Protective efficacy was determined after M. bovis challenge. RNA was prepared from PPD-stimulated PBMC prepared from vaccinated-protected, vaccinated-unprotected and unvaccinated control cattle prior to M. bovis challenge and global gene expression determined by RNA-seq. 668 genes were differentially expressed in vaccinated-protected cattle compared with vaccinated-unprotected and unvaccinated control cattle. Cytokine-cytokine receptor interaction was the most significant pathway related to this dataset with IL-22 expression identified as the dominant surrogate of protection besides INF-γ. Finally, the expression of these candidate genes identified by RNA-seq was evaluated by RT-qPCR in an independent set of PBMC samples from BCG vaccinated and unvaccinated calves. This experiment confirmed the importance of IL-22 as predictor of vaccine efficacy.  相似文献   

13.
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α−/− macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.  相似文献   

14.
Mycobacterium bovis is the causative agent of tuberculosis in cattle but also infects other animals, including humans. Previous studies in cattle have demonstrated that the protection induced by BCG is not complete. In order to improve the protection efficacy of BCG, in this study we overexpressed Ag85B in a BCG Pasteur strain, by using an expression system based on the use of an auxotrophic strain for the leucine amino acid, and complementation with leuD. We found that vaccination of cattle with BCG overexpressing Ag85B induced higher production of IL-17 and IL-4 mRNA upon purified protein derivative (PPDB) stimulation of peripheral blood mononuclear cells (PBMCs) than vaccination with BCG. Moreover, the IL-17 mRNA expression after vaccination negatively correlated with disease severity resulting from a subsequent challenge with M. bovis, suggesting that this cytokine is a potential biomarker of cattle protection against bovine tuberculosis. Importantly, vaccination with the recombinant BCG vaccine protected cattle better than the wild-type BCG Pasteur.  相似文献   

15.
Tuberculosis has great public health impact with high rates of mortality and the only prophylactic measure for it is the Mycobacterium bovisbacillus Calmette-Guérin (BCG) vaccine. The present study evaluated the release of cytokines [interleukin (IL)-1, tumour necrosis factor and IL-6] and chemokines [macrophage inflammatory protein (MIP)-1α and MIP-1β] by THP-1 derived macrophages infected with BCG vaccine obtained by growing mycobacteria in Viscondessa de Moraes Institute medium medium (oral) or Sauton medium (intradermic) to compare the effects of live and heat-killed (HK) mycobacteria. Because BCG has been reported to lose viability during the lyophilisation process and during storage, we examined whether exposing BCG to different temperatures also triggers differences in the expression of some important cytokines and chemokines of the immune response. Interestingly, we observed that HK mycobacteria stimulated cytokine and chemokine production in a different pattern from that observed with live mycobacteria.  相似文献   

16.
The limited efficacy of the BCG vaccine against tuberculosis is partly due to the missing expression of immunogenic proteins. We analyzed whether the addition to BCG of ESAT-6 and HspX, two Mycobacterium tuberculosis (Mtb) antigens, could enhance its capacity to activate human dendritic cells (DCs). BCG showed a weak ability to induce DC maturation, cytokine release, and CD4+ lymphocytes and NK cells activation. The addition of ESAT-6 or HspX alone to BCG-stimulated DC did not improve these processes, whereas their simultaneous addition enhanced BCG-dependent DC maturation and cytokine release, as well as the ability of BCG-treated DCs to stimulate IFN-γ release and CD69 expression by CD4+ lymphocytes and NK cells. Addition of TLR2-blocking antibody decreased IL-12 release by BCG-stimulated DCs incubated with ESAT-6 and HspX, as well as IFN-γ secretion by CD4+ lymphocytes co-cultured with these cells. Moreover, HspX and ESAT-6 improved the capacity of BCG-treated DCs to induce the expression of memory phenotype marker CD45RO in naïve CD4+ T cells. Our results indicate that ESAT-6 and HspX cooperation enables BCG-treated human DCs to induce T lymphocyte and NK cell-mediated immune responses through TLR2-dependent IL-12 secretion. Therefore ESAT-6 and HspX represent good candidates for improving the effectiveness of BCG vaccination.  相似文献   

17.
Mycobacterium tuberculosis and M. bovis BCG infect APCs. In vitro, mycobacteria inhibit IFN-gamma-induced MHC-II expression by macrophages, but the effects of mycobacteria on lung APCs in vivo remain unclear. To assess MHC-II expression on APCs infected in vivo, mice were aerosol-infected with GFP-expressing BCG. At 28 d, ∼1% of lung APCs were GFP+ by flow cytometry and CFU data. Most GFP+ cells were CD11bhigh/CD11cneg-mid lung macrophages (58-68%) or CD11bhigh/CD11chigh DCs (28-31%). Lung APC MHC-II expression was higher in infected mice than naïve mice. Within infected lungs, however, MHC-II expression was lower in GFP+ cells than GFP− cells for both macrophages and DCs. MHC-II expression was also inhibited on purified lung macrophages and DCs that were infected with BCG in vitro. Thus, lung APCs that harbor mycobacteria in vivo have decreased MHC-II expression relative to uninfected APCs from the same lung, possibly contributing to evasion of T cell responses.  相似文献   

18.
ESAT-6, an abundantly secreted protein of Mycobacterium tuberculosis (M. tuberculosis) is an important virulence factor, inactivation of which leads to reduced virulence of M. tuberculosis. ESAT-6 alone, or in complex with its chaperone CFP-10 (ESAT-6:CFP-10), is known to modulate host immune responses; however, the detailed mechanisms are not well understood. The structure of ESAT-6 or ESAT-6:CFP-10 complex does not suggest presence of enzymatic or DNA-binding activities. Therefore, we hypothesized that the crucial role played by ESAT-6 in the virulence of mycobacteria could be due to its interaction with some host cellular factors. Using a yeast two-hybrid screening, we identified that ESAT-6 interacts with the host protein beta-2-microglobulin (β2M), which was further confirmed by other assays, like GST pull down, co-immunoprecipitation and surface plasmon resonance. The C-terminal six amino acid residues (90–95) of ESAT-6 were found to be essential for this interaction. ESAT-6, in complex with CFP-10, also interacts with β2M. We found that ESAT-6/ESAT-6:CFP-10 can enter into the endoplasmic reticulum where it sequesters β2M to inhibit cell surface expression of MHC-I-β2M complexes, resulting in downregulation of class I-mediated antigen presentation. Interestingly, the ESAT-6:β2M complex could be detected in pleural biopsies of individuals suffering from pleural tuberculosis. Our data highlight a novel mechanism by which M. tuberculosis may undermine the host adaptive immune responses to establish a successful infection. Identification of such novel interactions may help us in designing small molecule inhibitors as well as effective vaccine design against tuberculosis.  相似文献   

19.
Mycobacterium tuberculosis is a major human pathogen and the causative agent for the pulmonary disease, tuberculosis (TB). Current treatment programs to combat TB are under threat due to the emergence of multi-drug and extensively-drug resistant TB. Through the use of high throughput whole cell screening of an extensive compound library a number of imidazo[1,2-a]pyridine (IP) compounds were obtained as potent lead molecules active against M. tuberculosis and Mycobacterium bovis BCG. The IP inhibitors (1–4) demonstrated minimum inhibitory concentrations (MICs) in the range of 0.03 to 5 µM against a panel of M. tuberculosis strains. M. bovis BCG spontaneous resistant mutants were generated against IP 1, 3, and 4 at 5× MIC and subsequent whole genome sequencing identified a single nucleotide polymorphism 937ACC>937GCC (T313A) in qcrB, which encodes the b subunit of the electron transport ubiquinol cytochrome C reductase. This mutation also conferred cross-resistance against IP 1, 3 and 4 demonstrating a common target. Gene dosage experiments confirmed M. bovis BCG QcrB as the target where over-expression in M. bovis BCG led to an increase in MIC from 0.5 to >8 µM for IP 3. An acute murine model of TB infection established bacteriostatic activity of the IP series, which await further detailed characterization.  相似文献   

20.
The live vaccine Mycobacterium bovis bacillus Calmette-Guérin (BCG) provides variable efficacy against adult pulmonary tuberculosis (TB). Recombinant BCG, expressing either immunodominant antigens or Th1 cytokines, is a promising strategy for developing a new TB vaccine. However, not much is known about whether the introduction of cytokine and specific antigen genes concurrently into the BCG strain could improve the immunogenicity of BCG. In this study, a recombinant BCG strain (rBCG) expressing the fusion protein human interleukin (IL)-2 and ESAT-6 (early secreted antigenic target-6 kDa) antigen of Mycobacterium tuberculosis was constructed. Six weeks after BALB/c mice (H-2d) were immunized with 106 colony forming units (CFUs) BCG or rBCG, splenocyte proliferation was determined with MTT [3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide] assay, IL-4 and interferon (IFN)-gamma produced by splenocytes were tested by enzyme linked immunosorbent assay (ELISA,) and the cytotoxicity of splenocytes from immunized mice to P815 cells (H-2d) expressing ESAT-6 protein was measured using CytoTox 96 Non-Radioactive Cytotoxicity Assay. Compared with native BCG-vaccinated mice, rBCG induced stronger Th1 responses that were confirmed by high lymphoproliferative responses and IFN-gamma production to culture filtrate protein (CFP) or ESAT-6 protein. Moreover, rBCG induced significant enhanced CTL responses against P815-ESAT-6 cells. Results from rBCG-immunized mice demonstrated that introducing the il-2 and esat-6 genes into BCG could enhance Th1 type immune responses to ESAT-6. Further investigation is needed by introducing other Th1 cytokines and antigens into BCG to optimize the protective efficacy against TB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号