首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We carried out a 16-month in situ study to investigate the ecology of Vibrio spp. and pathogenic Vibrio species in coastal sediments of the Mediterranean Sea, employing multiple-regression analysis to reveal the major environmental factors controlling their occurrence in the benthic environment. In addition, association between vibrios and sediment-inhabiting meiofauna, which is a major component of benthic ecosystems, was investigated. Culturable and total Vibrio spp. estimates by most-probable-number technique coupled with standard polymerase chain reaction (PCR) and real-time PCR methods, respectively, were at least one order of magnitude higher in sediment than in seawater. In addition, potential human pathogenic species Vibrio cholerae, Vibrio vulnificus and Vibrio parahaemolyticus occurred in the sediment with V. parahaemolyticus being the most frequently found. In the pelagic environment, 60% of total variance in culturable Vibrio data was explained by sea surface temperature (40%), salinity (13%) and organic matter concentration (7%). In the benthic environment, sea surface temperature was the only factor that significantly affected culturable Vibrio occurrence although it explained only 25% of total variance, suggesting that additional unexplored factors may play a role as well. No correlation was found between culturable Vibrio spp. concentrations and the abundance of harpacticoid copepods in the sediment whilst a negative correlation was found between Vibrio spp. and nematode abundance which accounted for almost 90% of the total meiofaunal density. Taxonomic analysis revealed that selective bacterial feeders accounted for nearly 50% of the total nematode community and included genera such as Terschellingia, Molgolaimus and Halalaimus, suggesting that top-down control by nematode grazing may be an important factor affecting Vibrio occurrence in these sediments. It is concluded that the benthic marine environment may function as a reservoir of Vibrio spp. and potential pathogenic vibrios whose ecological features appeared substantially different from the ones recognised in the pelagic environment.  相似文献   

2.
While several studies on the ecology of Vibrio vulnificus in Gulf Coast environments have been reported, there is little information on the distribution of this pathogen in East Coast waters. Thus, we conducted a multiyear study on the ecology of V. vulnificus in estuarine waters of the eastern United States, employing extensive multiple regression analyses to reveal the major environmental factors controlling the presence of this pathogen, and of Vibrio spp., in these environments. Monthly field samplings were conducted between July 2000 and April 2002 at six different estuarine sites along the eastern coast of North Carolina. At each site, water samples were taken and nine physicochemical parameters were measured. V. vulnificus isolates, along with estuarine bacteria, Vibrio spp., Escherichia coli organisms, and total coliforms, were enumerated in samples from each site by using selective media. During the last 6 months of the study, sediment samples were also analyzed for the presence of vibrios, including V. vulnificus. Isolates were confirmed as V. vulnificus by using hemolysin gene PCR or colony hybridization. V. vulnificus was isolated only when water temperatures were between 15 and 27°C, and its presence correlated with water temperature and dissolved oxygen and vibrio levels. Levels of V. vulnificus in sediments were low, and no evidence for an overwintering in this environment was found. Multiple regression analysis indicated that vibrio levels were controlled primarily by temperature, turbidity, and levels of dissolved oxygen, estuarine bacteria, and coliforms. Water temperature accounted for most of the variability in the concentrations of both V. vulnificus (47%) and Vibrio spp. (48%).  相似文献   

3.
While numerous studies have characterized the distribution and/or ecology of various pathogenic Vibrio spp., here we have simultaneously examined several estuarine sites for Vibrio vulnificus, V. cholerae, and V. parahaemolyticus. For a one year period, waters and sediment were monitored for the presence of these three pathogens at six different sites on the east coast of North Carolina in the United States. All three pathogens, identified using colony hybridization and PCR methods, occurred in these estuarine environments, although V. cholerae occurred only infrequently and at very low levels. Seventeen chemical, physical, and biological parameters were investigated, including salinity, water temperature, turbidity, dissolved oxygen, levels of various inorganic nutrients and dissolved organic carbon, as well as total vibrios, total coliforms, and E. coli. We found each of the Vibrio spp. in water and sediment to correlate to several of these environmental measurements, with water temperature and total Vibrio levels correlating highly (P<0.0001) with occurrence of the three pathogens. Thus, these two parameters may represent simple assays for characterizing the potential public health hazard of estuarine waters.  相似文献   

4.
Viruses were found to be very abundant in the top layer of the sediments of Lac Gilbert, Québec. Viruses were extracted from the sediments using pyrophosphate buffer, and viruses from the diluted extracts were pelleted onto grids and enumerated using transmission electron microscopy. Viral abundance in the sediments ranged from 6.5 × 108 to 1.83 × 1010 ml–1, which is 10- to 1,000-fold greater than the number observed in the water column. This increase corresponds well with the 100- to 1,000-fold increase in bacterial abundance in the sediments. Viral abundance differed significantly among the surface sediment samples taken at different bottom depths and among samples taken at different depths of the water column. Viral abundance also varied significantly between the oxic and anoxic zones of the water column and the sediments. The virus-to-bacteria ratio varied greatly among the different sediment sites but not among depths in the water column. Viral abundance in the water column was related to bacterial abundance and chlorophyll concentration, whereas viruses in the sediments were most abundant in sediments with high organic matter content. Elevated viral abundance and their erratic distribution in the sediments suggest that viruses might play an important role in sediment microbial dynamics. Correspondence to: Roxane Maranger  相似文献   

5.
Lehtoranta  Jouni  Pitkänen  Heikki 《Hydrobiologia》2003,492(1-3):55-67
The relationships between P and components binding P were studied by analysing the concentrations of N, P, Fe, Mn, Ca and Al in sediments and pore water along the estuarine transect of the River Neva in August 1995. The high sediment organic matter concentration resulted in low surface redox potential and high pore-water o-P concentration, whereas the abundance of amphipods resulted in high surface redox potentials and low pore-water o-P concentration. However, despite the variation in sediment organic matter and the abundance of amphipods, very reduced conditions and slightly variable concentrations of Tot-P (0.7–1.1 mg g–1 DW) were observed in the 10–15 cm sediment depth along the estuarine gradient, indicating that the pools of mobile P were largely depleted within the depth of 0–15 cm. Multiple regression analysis demonstrated that organic matter and Tot-Fe concentration of the sediment were closely related to the variation in Tot-P concentration of the sediments (r 2 = 0.817, n=32). In addition, the high total Fe:P ratio suggested that there is enough Fe to bind P in sediments along the estuarine gradient. However, low Fediss concentrations in the pore water of reduced sediment (redox-potential <–50 mV) indicated efficient precipitation of FeS (FeS and FeS2), incapable to efficiently bind P. Consequently, the low Fediss:o-P ratio (< 1) recorded in pore water in late summer implied that Fe3+ oxides formed by diffusing Fediss in the oxic zone of the sediments were insufficient to bind the diffusing o-P completely. The measured high o-P concentrations in the near-bottom water are consistent with this conclusion. However, there was enough Fediss in pore water to form Fe3+ oxides to bind upwards diffusing P in the oxic sediment layer of the innermost Neva estuary and the areas bioturbated by abundant amphipods.  相似文献   

6.
Tritiated thymidine incorporation (TTI) into DNA was used to estimate bacterial productivity in sediment and water samples from two sites in Langebaan Lagoon, South Africa. Routine analysis of isotope dilution showed seasonal variations of approximately threefold in the thymidine precursor pool sizes for bacterial assemblages from each site. Dual label incorporation of [3H]-thymidine and 14C-leucine into DNA and protein, respectively, showed that pelagic but not sediment assemblages were in a balanced state of growth during TTI. This is the first report of dual label measurements of bacterial production in sediments. Sediments supported bacterial productivities that exceeded those in the water column by factors from five- to 950-fold, whereas bacterial abundance supported by sediments exceeded that in the water column by more than 3 orders of magnitude. Estimates of bacterial productivities in sediments were coincident with levels of organic content in sediments, but not with bacterial abundance. Measurements of TTI activity for 5 different benthic microhabitats at one lagoon site showed highest activity associated with seagrass beds (2.11 ± 0.84 nmol thymidine hours–1 g-1 dry weight), whereas activities decreased with depth (0.46 ± 0.21 nmol thymidine hours–1 g–I dry weight) below sediment surface.Offprint requests to: B. J. Tibbles.  相似文献   

7.
The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 × 108 cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 × 105 CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (∼3.3 × 105 CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 × 103 CE/g), E. coli (2.2 × 103 CE/g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds.  相似文献   

8.
9.
The effect of phytodetritus derived from Phaeocystis sp. bloom on benthic mineralization processes has been determined at four intertidal stations along the French coast of the eastern English Channel. Sites were chosen to offer a diversity of sediment types, from permeable sandy beach to estuarine mudflats. Sediment Oxygen Demand (SOD) as well as total fluxes of Dissolved Inorganic Nitrogen (DIN) at the sediment–water interface were determined by using whole core incubation technique and diffusive fluxes were predicted from interstitial water concentrations. In the absence of phytodetritus deposits, a marked gradient of granulometric characteristics and organic matter contents were observed, and resulted in more intensive mineralization processes in muddy sediments. Highly significant correlations (P < 0.05) were evidenced between SOD and porosity, bacterial biomass, Organic Carbon and Organic Nitrogen, evidencing the direct link between sediment texture, organic matter accumulation and microbial activity. The spring bloom led to a massive input of organic matter in surficial sediments and mineralization rates significantly increased while higher DIN release towards the water column was observed. A modification of the mineralization pathways was evidenced but clearly depended on the sediment type. With a global view, benthic mineralization processes in the intertidal zone provided significant a part of DIN inputs in the coastal zone while water column was depleted in nutrients.  相似文献   

10.
Both naturally occurring marine sediments and artificial sediments were used as supports for natural transformation of marine bacteria. While transformation of Pseudomonas stutzeri ZoBell suspended in artificial seawater was not detected when recipient cells and rifampin resistance DNA were loaded onto sterile sediment columns, transformation could be detected at frequencies 4 to 20 times that of spontaneous resistance when recipient cells and rifampin resistance DNA were loaded onto sterile sediment columns. Treatment of these columns with DNase I reduced transformation frequencies to levels comparable to those of spontaneous-resistance frequencies. Sediments with higher organic contents supported higher frequencies of transformation than did those with lower amounts of organic matter. Transformation was also detected when recipient cells and DNA were loaded on columns prepared from nonsterile sediments, although the frequencies of transformation were lower than when sterile sediments were used. Finally, nonsterilized sediments that were not supplemented with laboratory strains did not support detectable levels of transformation in sediment columns, but when these same sediments were transferred to filters and placed on complex media, transformation was detected at a frequency three times that for spontaneous resistance. This transformation frequency was partially reduced to levels near that for spontaneous resistance by the addition of DNase I to sediment filters. These results indicate that marine sediments facilitate the uptake and expression of exogenous DNA by transformable marine bacteria and that sediments are a more likely niche for natural transformation than the water column in the marine environment.  相似文献   

11.
Aquaculture industries are the fastest food producing sector and are found globally to resolve the food demands of the fast growing human population. The aquaculture sector has typically been affected by the biofilm forming aquatic pathogens that lead to economic losses with seafood spoilage. Vibrio spp. are the most common and well known aquatic pathogens causing Vibriosis infections in aquatic animals. They are natural habitants of coastal and estuarine environments where they can be associated with aquatic animals. The biofilm forming Vibrio spp. pose increasing problems with the development of antibiotic resistance that causes severe threats in aquaculture. Although commercial antibiotics have been used for Vibrio spp., several natural and organic compounds have been reported against Vibrios biofilm infections. The specific structural genes and regulatory systems of the quorum sensing system mediate the biofilm formation in Vibrios.  相似文献   

12.
《Marine Micropaleontology》2003,47(1-2):101-116
Surface sediments from seven stations located in the seasonally stratified, frontal and mixed water regions in the Celtic and Irish seas have been analysed for their dinoflagellate cyst assemblages and dinosterol content. A total of 45 dinoflagellate cyst taxa have been identified and the assemblages related to surface and sediment conditions. Sediments from the mixed water region, at 30 m water depth, are characterised by a relatively low cyst concentration (∼2300 cysts/g dry weight) and high relative abundances of Lingulodinium machaerophorum accompanied by Spiniferites membranaceus, Brigantedinium spp. and Dubridinium caperatum. Assemblages from stratified and frontal water stations are dominated by Spiniferites ramosus associated with Operculodinium centrocarpum, Brigantedinium spp., cysts of Polykrikos schwartzii and Selenopemphix quanta. Ordination techniques performed on a restricted number of 35 taxa from the assemblages differentiated the stratified and frontal assemblages based on the abundance of the less abundant species Bitectatodinium tepikiense and Spiniferites elongatus. Among the environmental parameters (sea-surface temperature and salinity, stratification index, chlorophyll concentration and sediment grain-size classes), the seasonal stratification and sedimentological context, itself a function of tidal dynamics, explain most of the variance in the environmental conditions. These results indicate that dinoflagellate cyst analyses of shelf sediment records can be used to document the planktonic signal of seasonal stratification dynamics.  相似文献   

13.
Escherichia coli, a fecal coliform, was found to survive for longer periods of time in unsterile natural seawater when sediment material was present than in seawater alone, and at least on one occasion growth was observed to occur. This enteric bacterium was found to increase rapidly in number in autoclaved natural seawater and autoclaved sediment taken from areas receiving domestic wastes, even when the seawater had salinities as high as 34 g/kg. However, in autoclaved seawater, growth was always more gradual and never reached numbers as high as those observed when sediment was present. It was found that nutrients were easily eluted from the sediment after autoclaving or upon addition to artificial seawater, but little elution occured during mixing of the sediments with unsterile natural seawater. The longer survival of E. coli in the sediment is attributed to the greater content of organic matter present in the sediment than the sweater. These laboratory results, in part, could explain why on a volume basis larger numbers of coliforms and fecal coliforms and fecal coliforms were found in estuarine sediments than the overlaying water at field sites.  相似文献   

14.
Mangroves are highly productive marine ecosystems where bacteria (culturable and non-culturable) actively participate in biomineralization of organic matter and biotransformation of minerals. This study explores spatial and seasonal fluctuations of culturable heterotrophic bacteria and Vibrio spp. in the sediments of an intact mangrove ecosystem and determines the dominant environmental factors that govern these fluctuations. Sediment samples were collected monthly from three stations in the mangroves of Laguna de Balandra, Baja California Sur, Mexico, through an annual cycle. Physicochemical parameters included seawater temperature, salinity, and concentration of dissolved oxygen. Viable counts of culturable heterotrophic bacteria and Vibrio spp. were made. In one sample (March 2003), nutrient concentrations (ammonium, nitrites, nitrates, and phosphates), organic matter, pH and sediment texture were also determined. General cluster analyses, analysis of variance of specific variables, and several principal component analyses demonstrated that seawater temperature is the principal determinant of seasonal distribution of culturable heterotrophic bacteria and Vibrio spp. in mangrove sediments. Soil texture, concentration of nutrients, and organic matter concentration contribute to heterogenicity to a lesser extent. A large spatial variation in bacterial populations was observed over short distances ( approximately 1 m) in sampling areas within the same site. These analyses show that the culturable bacterial distribution in sediments of mangroves has high spatial and temporal heterogeneity.  相似文献   

15.
Disposal of fecally contaminated poultry litter by land application can deliver pathogens and fecal indicator bacteria (FIB) into receiving waters via runoff. While water quality is regulated by FIB enumeration, FIB testing provides inadequate information about contamination source and health risk. This microbial source tracking (MST) study compared the persistence of the Brevibacterium sp. strain LA35 16S rRNA gene (marker) for poultry litter with that of pathogens and FIB under outdoor, environmentally relevant conditions in freshwater, marine water, and sediments over 7 days. Salmonella enterica, Campylobacter jejuni, Campylobacter coli, Bacteroidales, and LA35 were enumerated by quantitative PCR (qPCR), and Enterococcus spp. and E. coli were quantified by culture and qPCR. Unlike the other bacteria, C. jejuni was not detectable after 48 h. Bacterial levels in the water column consistently declined over time and were highly correlated among species. Survival in sediments ranged from a slow decrease over time to growth, particularly in marine microcosms and for Bacteroidales. S. enterica also grew in marine sediments. Linear decay rates in water (k) ranged from −0.17 day−1 for LA35 to −3.12 day−1 for C. coli. LA35 levels correlated well with those of other bacteria in the water column but not in sediments. These observations suggest that, particularly in the water column, the fate of LA35 in aquatic environments is similar to that of FIB, C. coli, and Salmonella, supporting the hypothesis that the LA35 marker gene can be a useful tool for evaluating the impact of poultry litter on water quality and human health risk.  相似文献   

16.
Water bodies often receive agrochemicals and animal waste carrying fecal indicator bacteria (FIB) and zoonotic pathogens, but we know little about the effects of agrochemicals on these microbes. We assessed the direct effects of the pesticides atrazine, malathion, and chlorothalonil and inorganic fertilizer on Escherichia coli and enterococcal survival in simplified microcosms held in the dark. E. coli strain composition in sediments and water column were positively correlated, but none of the agrochemicals had significant direct effects on E. coli strain composition or on densities of culturable FIBs. In a companion study, microcosms with nondisinfected pond water and sediments were exposed to or shielded from sunlight to examine the potential indirect effects of atrazine and inorganic fertilizer on E. coli. The herbicide atrazine had no effect on E. coli in dark-exposed microcosms containing natural microbial and algal communities. However, in light-exposed microcosms, atrazine significantly lowered E. coli densities in the water column and significantly increased densities in the sediment compared to controls. This effect appears to be mediated by the effects of atrazine on algae, given that atrazine significantly reduced phytoplankton, which was a positive and negative predictor of E. coli densities in the water column and sediment, respectively. These data suggest that atrazine does not directly affect the survival of FIB, rather that it indirectly alters the distribution and abundance of E. coli by altering phytoplankton and periphyton communities. These results improve our understanding of the influence of agricultural practices on FIB densities in water bodies impacted by agricultural runoff.  相似文献   

17.
The Scheldt river drains a densely populated and industrialized area in northern France, western Belgium and the south-west Netherlands. Mineralization of the high organic load carried by the river leads to oxygen depletion in the water column and high concentrations of dissolved nitrogen and phosphorus compounds. Upon estuarine mixing, dissolved oxygen concentrations are gradually restored due to reaeration and dilution with sea water. The longitudinal redox gradient present in the Scheldt estuary strongly affects the geochemistry of nutrients. Dissolved nutrients in the water column and dissolved nitrogen species in sediment porewaters were determined for a typical summer and winter situation. Water column concentration-salinity plots showed conservative behaviour of dissolved Si during winter. During summer (and spring) dissolved Si may be completely removed from solution due to uptake by diatoms. The geochemistry of phosphorus was governed by inorganic and biological processes. The behaviour of nitrogen was controlled by denitrification in the anoxic fluvial estuary, followed by nitrification in the upper estuary (prior to oxygen regeneration). In addition, nitrogen was taken up during phytoplankton blooms in the lower estuary. Dissolved inorganic nitrogen species in porewaters from the upper 20 cm of sediments were obtained from a subtidal site in the middle of the lower estuary. Dissolved nutrient concentrations were low in the upper 10–15 cm of the sandy and organic poor (<1% POC) sediments mainly as a result of strong sediment mixing. The porewater profiles of ammonium and nitrate were evaluated quantitatively, using a one-dimensional steady-state diagenetic model. This coupled ammonium-nitrate model showed ammonification of organic matter to be restricted to the upper 4 to 7 cm of the sediments. Total nitrification ranged from 3.7–18.1 mmol m?2 d?1, converting all ammonium produced by ammonification. The net balance between nitrification and denitrification depended on the season. Nitrate was released from the sediments during winter but is taken up from the water column during summer. These results are in good agreement with data obtained from the independently calibrated water column model for the Scheldt Estuary (VAN GILSet al., 1993).  相似文献   

18.
We have compared the effectiveness of four media developed in the last years together with the medium GSTC(glucose-salt-tellurite-crystal violet), devised in our laboratory, for the recovery of vibrios from estuarine waters. In addition, a number of reference Vibrio and non-Vibrio strains have been tested for growth on the five media. TCBS and GSTC were the most selective media for reference strains of Vibrio spp. However, when the media were tested with samples of water from three different sites of an estuary, only TCBS was effective enough to recover vibrios inhibiting the growth of non-Vibrio populations. We also report here the usefulness of TCBS for isolation of the fish pathogen V. anguillarum, since a total of 81 strains isolated from diseased fish and water in various parts of the world grew on this medium. In conclusion, we consider the TCBS as the best medium to isolate Vibrio species pathogenic for humans and fish, and for recovery of vibrios from estuarine waters.  相似文献   

19.
The value of Bacteroidales genetic markers and fecal indicator bacteria (FIB) to predict the occurrence of waterborne pathogens was evaluated in ambient waters along the central California coast. Bacteroidales host-specific quantitative PCR (qPCR) was used to quantify fecal bacteria in water and provide insights into contributing host fecal sources. Over 140 surface water samples from 10 major rivers and estuaries within the Monterey Bay region were tested over 14 months with four Bacteroidales-specific assays (universal, human, dog, and cow), three FIB (total coliforms, fecal coliforms, and enterococci), two protozoal pathogens (Cryptosporidium and Giardia spp.), and four bacterial pathogens (Campylobacter spp., Escherichia coli O157:H7, Salmonella spp., and Vibrio spp.). Indicator and pathogen distribution was widespread, and detection was not highly seasonal. Vibrio cholerae was detected most frequently, followed by Giardia, Cryptosporidium, Salmonella, and Campylobacter spp. Bayesian conditional probability analysis was used to characterize the Bacteroidales performance assays, and the ratios of concentrations determined using host-specific and universal assays were used to show that fecal contamination from human sources was more common than livestock or dog sources in coastal study sites. Correlations were seen between some, but not all, indicator-pathogen combinations. The ability to predict pathogen occurrence in relation to indicator threshold cutoff levels was evaluated using a weighted measure that showed the universal Bacteroidales genetic marker to have a comparable or higher mean predictive potential than standard FIB. This predictive ability, in addition to the Bacteroidales assays providing information on contributing host fecal sources, supports using Bacteroidales assays in water quality monitoring programs.Coastal waters worldwide have been influenced by human activities for centuries, as they are adjacent to densely populated areas, provide a means of transportation, and receive substantial recreational use. Consequently, impairments in nearshore water quality can result from enrichment of the coastal marine ecosystem with pollutants and nutrients that are transported down watersheds from land to sea. This poses health risks to humans and animals. Microbial pollution is caused by fecal contamination from a variety of sources, including humans, livestock, pets, and wildlife, and fecal pathogen pollution has been associated with numerous outbreaks of waterborne disease (14, 15, 27, 41, 49, 55).Fecal indicator bacteria (FIB) that normally reside in the gastrointestinal tracts of humans and animals are used throughout the world to assess the microbiological quality of drinking and recreational waters. In the United States, FIB are used to define bacterial water quality standards aimed at reducing health risks in recreational waters, as required by the Beaches Environmental Assessment and Coastal Health Act (5), which amended the Clean Water Act (11). Groups of standard FIB monitored in water include total coliforms (TC), fecal coliforms (FC), Escherichia coli bacteria, and enterococci. These bacterial groups have been considered indicators of health risks in epidemiologic and quantitative microbial risk assessment (QMRA) studies (38, 42, 59, 66).To date, many monitoring programs have focused only on FIB measurements and do not test for pathogens. However, substantial evidence has been collected that challenges the usefulness of FIB data alone. A few limitations of using standard FIB to represent pathogens in water include the fact that FIB have been shown to multiply in the environment, that they are not host specific, and that the absence of FIB is not necessarily evidence of pathogen absence (21, 50, 51, 56). Consequently, alternative indicators of fecal pollution that address the weaknesses of standard FIB are needed. Ideally, these indicators would decay at rates similar to those of pathogens, be present at high concentrations in fecal sources, and be present at low concentrations in unpolluted environments. Proposed alternative indicators include (i) anaerobic bacteria such as bifidobacteria (46), Clostridium perfringens (22), and Bacteroidales (20); (ii) viruses such as F-specific RNA (F-RNA)-specific coliphages (39), phages infecting Bacteroides fragilis (30), and host-specific viruses (25); and (iii) chemical compounds such as fecal sterols (29). An added benefit of using alternative indicators is that, in some cases, host sources of fecal contamination can be identified.Over a decade ago, PCR-based assays were developed to detect Bacteroides in an effort to monitor human fecal pollution in the environment (36, 37). This approach was adopted by others and further advanced to identify host-specific Bacteroidales 16S rRNA gene markers for different fecal sources. This has resulted in PCR and quantitative PCR (qPCR) assays for the detection of human, dog, pig, and cow Bacteroidales markers (6, 7, 16, 34, 57) as well as assays for the detection of general Bacteroidales markers (7, 34). The analysis of Bacteroidales markers has been incorporated in microbial source tracking (MST) studies, particularly in the United States, Japan, and Europe (24, 45, 52-54, 64).The objective of this study was to compare the abilities of Bacteroidales markers and FIB to predict the occurrence of waterborne pathogens in riverine and estuarine waters in California and to use several statistical approaches to better characterize the strengths and limitations of the assays. We hypothesized that Bacteroidales and FIB would correlate with bacterial and protozoal pathogen detection in surface waters. To test this hypothesis, four Bacteroidales-specific assays (universal, human, dog, and cow), three types of FIB (total coliforms, fecal coliforms, and enterococci), two protozoal pathogens (Cryptosporidium and Giardia spp.), and four bacterial pathogens (Campylobacter spp., E. coli O157, Salmonella spp., and Vibrio spp.) were monitored monthly for 14 months in 10 streams, rivers, and estuaries feeding into the Monterey Bay region of California.  相似文献   

20.
Large blooms of opportunistic green macroalgae such as Enteromorpha intestinalis are of ecological concern in estuaries worldwide. Macroalgae derive their nutrients from the water column but estuarine sediments may also be an important nutrient source. We hypothesized that the importance of these nutrient sources to E. intestinalis varies along a nutrient-resource gradient within an estuary. We tested this in experimental units constructed with water and sediments collected from 3 sites in Upper Newport Bay estuary, California, US, that varied greatly in water column nutrient concentrations. For each site there were three treatments: sediments + water; sediments + water + Enteromorpha intestinalis (algae); inert sand + water + algae. Water in units was exchanged weekly simulating low turnover characteristic of poorly flushed estuaries. The importance of the water column versus sediments as a source of nutrients to E. intestinalis varied with the magnitude of the different sources. When initial water column levels of dissolved inorganic nitrogen (DIN) and soluble reactive phosphorus (SRP) were low, estuarine sediments increased E. intestinalis growth and tissue nutrient content. In experimental units from sites where initial water column DIN was high, there was no effect of estuarine sediments on E. intestinalis growth or tissue N content. Salinity, however, was low in these units and may have inhibited growth. E. intestinalis growth and tissue P content were highest in units from the site with highest initial sediment nutrient content. Water column DIN was depleted each week of the experiment. Thus, the water column was a primary source of nutrients to the algae when water column nutrient supply was high, and the sediments supplemented nutrient supply to the algae when water column nutrient sources were low. Depletion of water column DIN in sediment + water units indicated that the sediments may have acted as a nutrient sink in the absence of macroalgae. Our data provide direct experimental evidence that macroalgae utilize and ecologically benefit from nutrients stored in estuarine sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号