共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The purpose of the present study was to prepare intranasal delivery system of sildenafil citrate and estimate its relative
bioavailability after nasal administration in rabbits to attain rapid onset of action with good efficacy at lower doses. Sildenafil
citrate saturated solubility was determined in different solvents, cosolvents, and microemulsion systems. For nasal application,
sildenafil citrate was formulated in two different systems: the first was a cosolvent system (S3) of benzyl alcohol/ethanol/water/Transcutol/taurodeoxy
cholate/Tween 20 (0.5:16.8:47.7:15.9:1:18.1% w/w). The second was a microemulsion system (ME6) containing Oleic acid: Labrasol/Transcutol/water (8.33:33.3:16.66:41.66% w/w). The prepared systems were characterized in relation to their clarity, particle size, viscosity, pH, and nasal ciliotoxicity.
In vivo pharmacokinetic performance of the selected system ME6 (with no nasal ciliotoxicity) was evaluated in a group of six rabbits
in a randomized crossover study and compared to the marketed oral tablets. The targeted solubility (>20 mg/ml) of sildenafil
citrate was achieved with cosolvent systems S1, S3, and S5 and with microemulsion systems ME3–ME6. The saturated solubility
of sildenafil citrate in cosolvent system S3 and microemulsion system ME6 were 22.98 ± 1.26 and 23.79 ± 1.16 mg/ml, respectively.
Microemulsion formulation ME6 showed shorter t
max (0.75 h) and higher AUC(0-∞) (1,412.42 ng h/ml) compared to the oral tablets which showed t
max equals 1.25 h and AUC(0-∞) of 1,251.14 ng h/ml after administration to rabbits at dose level of 5 mg/kg. The relative bioavailability was 112.89%. In
conclusion, the nasal absorption of sildenafil citrate microemulsion was found to be fast, indicating the potential of nasal
delivery instead of the conventional oral administration of such drug. 相似文献
3.
Stefano Toldo Rachel W. Goehe Marzia Lotrionte Eleonora Mezzaroma Evan T. Sumner Giuseppe G. L. Biondi-Zoccai Ignacio M. Seropian Benjamin W. Van Tassell Francesco Loperfido Giovanni Palazzoni Norbert F. Voelkel Antonio Abbate David A. Gewirtz 《PloS one》2013,8(3)
Purpose
The antineoplastic efficacy of anthracyclines is limited by their cardiac toxicity. In this study, we evaluated the toxicity of doxorubicin, non-pegylated liposomal-delivered doxorubicin, and epirubicin in HL-1 adult cardiomyocytes in culture as well as in the mouse in vivo.Methods
The cardiomyocytes were incubated with the three anthracyclines (1 µM) to assess reactive oxygen generation, DNA damage and apoptotic cell death. CF-1 mice (10/group) received doxorubicin, epirubicin or non-pegylated liposomal-doxorubicin (10 mg/kg) and cardiac function was monitored by Doppler echocardiography to measure left ventricular ejection fraction (LVEF), heart rate (HR) and cardiac output (CO) both prior to and 10 days after drug treatment.Results
In HL-1 cells, non-pegylated liposomal-doxorubicin generated significantly less reactive oxygen species (ROS), as well as less DNA damage and apoptosis activation when compared with doxorubicin and epirubicin. Cultured breast tumor cells showed similar sensitivity to the three anthracyclines. In the healthy mouse, non-pegylated liposomal doxorubicin showed a minimal and non-significant decrease in LVEF with no change in HR or CO, compared to doxorubicin and epirubicin.Conclusion
This study provides evidence for reduced cardiac toxicity of non-pegylated-liposomal doxorubicin characterized by attenuation of ROS generation, DNA damage and apoptosis in comparison to epirubicin and doxorubicin. 相似文献4.
Jo?o V. Cordeiro Susana Guerra Yoshiki Arakawa Mark P. Dodding Mariano Esteban Michael Way 《PloS one》2009,4(12)
The cortical actin cytoskeleton beneath the plasma membrane represents a physical barrier that vaccinia virus has to overcome during its exit from an infected cell. Previous observations using overexpression and pharmacological approaches suggest that vaccinia enhances its release by modulating the cortical actin cytoskeleton by inhibiting RhoA signalling using the viral protein F11. We have now examined the role of F11 and its ability to interact with RhoA to inhibit its downstream signalling in the spread of vaccinia infection both in vitro and in vivo. Live cell imaging over 48 hours reveals that loss of F11 or its ability to bind RhoA dramatically reduces the rate of cell-to-cell spread of the virus in a cell monolayer. Cells infected with the ΔF11L virus also maintained their cell-to-cell contacts, and did not undergo virus-induced motility as observed during wild-type infections. The ΔF11L virus is also attenuated in intranasal mouse models of infection, as it is impaired in its ability to spread from the initial sites of infection to the lungs and spleen. Loss of the ability of F11 to bind RhoA also reduces viral spread in vivo. Our results clearly establish that viral-mediated inibition of RhoA signalling can enhance the spread of infection not only in cell monolayers, but also in vivo. 相似文献
5.
6.
Tamaki Watanabe Naoko H. Tomioka Shigekazu Watanabe Masao Tsuchiya 《Nucleosides, nucleotides & nucleic acids》2014,33(4-6):192-198
Uric acid (UA) levels in mouse blood have been reported to range widely from 0.1 μM to 760 μM. The aim of this study was to demonstrate false in vitro and in vivo elevations of UA levels in mouse blood. Male ICR mice were anesthetized with pentobarbital (breathing mice) or sacrificed with overdose ether (non-breathing mice). Collected blood was dispensed into MiniCollect® tubes and incubated in vitro for 0 or 30 min at room temperature. After separation of plasma or serum, the levels of UA and hypoxanthine were determined using HPLC. From the non-incubated plasma of breathing mice, the true value of UA level in vivo was 13.5 ± 1.4 μM. However, UA levels in mouse blood increased by a factor of 3.9 following incubation in vitro. This “false in vitro elevation” of UA levels in mouse blood after blood sampling was inhibited by allopurinol, a xanthine oxidase inhibitor. Xanthine oxidase was converted to UA in mouse serum from hypoxanthine which was released from blood cells during incubation. Plasma UA levels from non-breathing mice were 19 times higher than those from breathing mice. This “false in vivo elevation” of UA levels before blood sampling was inhibited by pre-treatment with phentolamine, an α-antagonist. Over-anesthesia with ether might induce α-vasoconstriction and ischemia and thus degrade intracellular ATP to UA. For the accurate measurement of UA levels in mouse blood, the false in vitro and in vivo elevations of UA level must be avoided by immediate separation of plasma after blood sampling from anesthetized breathing mice. 相似文献
7.
UV-based pathogen reduction technologies have been developed in recent years to inactivate pathogens and contaminating leukocytes in platelet transfusion products in order to prevent transfusion-transmitted infections and alloimmunization. UVC-based technology differs from UVA or UVB-based technologies in that it uses a specific wavelength at 254 nm without the addition of any photosensitizers. Previously, it was reported that UVC irradiation induces platelet aggregation and activation. To understand if UVC-induced changes of platelet quality correlate with potential adverse events when these platelets are transfused into animals, we used a 2-event SCID mouse model in which the predisposing event was LPS treatment and the second event was infusion of UVC-irradiated platelets. We analyzed lung platelet accumulation, protein content in bronchoalveolar lavage fluid as an indication of lung injury, and macrophage inflammatory protein-2 (MIP-2) release in mice received UVC-irradiated or untreated control platelets. Our results showed UVC-irradiated platelets accumulated in lungs of the mice in a dose-dependent manner. High-doses of UVC-irradiated platelets were sequestered in the lungs to a similar level as we previously reported for UVB-irradiated platelets. Unlike UVB-platelets, UVC-platelets did not lead to lung injury or induce MIP-2 release. This could potentially be explained by our observation that although UVC treatment activated platelet surface αIIbβ3, it failed to activate platelet cells. It also suggests lung platelet accumulation and subsequent lung damage are due to different and separate mechanisms which require further investigation. 相似文献
8.
9.
10.
Chipkin Stuart R. van Bueren Antonia Bercel Eva Garrison Cort R. McCall Anthony L. 《Neurochemical research》1998,23(5):645-652
Glucocorticoids induce hyperinsulinemia, hyperglycemia, and depress glucose transport by aortic endothelium. High glucocorticoid doses are used for many diseases, but with unknown effects on brain glucose transport or metabolism. This study tested the hypothesis that glucocorticoids affect glucose transport or metabolism by brain microvascular endothelium. Male rats received dexamethasone (DEX) sc with sucrose feeding for up to seven days. Cerebral microvessels from rats treated with DEX/sucrose demonstrated increased GLUT1 and brain glucose extraction compared to controls. Glucose transport in vivo correlated with hyperinsulinemia. Pre-treatment with low doses of strep-tozotocin blunted hyperinsulinemia and prevented increased glucose extraction induced by DEX. In contrast, isolated brain microvessels exposed to DEX in vitro demonstrated suppression of 2-deox-yglucose uptake and glucose oxidation. We conclude that DEX/sucrose treatment in vivo increases blood-brain glucose transport in a manner that requires the effects of chronic hyperinsulinemia. These effects override any direct inhibitory effects of either hyperglycemia or DEX. 相似文献
11.
12.
Pamela T. Wong Pascale R. Leroueil Douglas M. Smith Susan Ciotti Anna U. Bielinska Katarzyna W. Janczak Catherine H. Mullen Jeffrey V. Groom II Erin M. Taylor Crystal Passmore Paul E. Makidon Jessica J. O’Konek Andrzej Myc Tarek Hamouda James R. Baker Jr. 《PloS one》2015,10(5)
Vaccine adjuvants have been reported to induce both mucosal and systemic immunity when applied to mucosal surfaces and this dual response appears important for protection against certain pathogens. Despite the potential advantages, however, no mucosal adjuvants are currently approved for human use. Evaluating compounds as mucosal adjuvants is a slow and costly process due to the need for lengthy animal immunogenicity studies. We have constructed a library of 112 intranasal adjuvant candidate formulations consisting of oil-in-water nanoemulsions that contain various cationic and nonionic surfactants. To facilitate adjuvant development we first evaluated this library in a series of high-throughput, in vitro assays for activities associated with innate and adaptive immune activation in vivo. These in vitro assays screened for the ability of the adjuvant to bind to mucin, induce cytotoxicity, facilitate antigen uptake in epithelial and dendritic cells, and activate cellular pathways. We then sought to determine how these parameters related to adjuvant activity in vivo. While the in vitro assays alone were not enough to predict the in vivo adjuvant activity completely, several interesting relationships were found with immune responses in mice. Furthermore, by varying the physicochemical properties of the surfactant components (charge, surfactant polar head size and hydrophobicity) and the surfactant blend ratio of the formulations, the strength and type of the immune response generated (TH1, TH2, TH17) could be modulated. These findings suggest the possibility of using high-throughput screens to aid in the design of custom adjuvants with unique immunological profiles to match specific mucosal vaccine applications. 相似文献
13.
M. K. Gaitonde Elizabeth Murray Vincent J. Cunningham 《Journal of neurochemistry》1989,52(5):1348-1352
The activity of phosphoglucose isomerase, its kinetic properties, and the effect of 6-phosphogluconate on its activity in the forward (glucose 6-phosphate----fructose 6-phosphate) and the reverse (fructose 6-phosphate----glucose 6-phosphate) reactions were determined in adult rat brain in vitro. The activity of phosphoglucose isomerase (in nmol/min/mg of whole brain protein) was 1,865 +/- 20 in the forward reaction and 1,756 +/- 32 in the reverse reaction at pH 7.5. It was 1,992 +/- 28 and 2,620 +/- 46, respectively, at pH 8.5. The apparent Km and Vmax of phosphoglucose isomerase were 0.593 +/- 0.031 mM and 2,291 +/- 61 nmol/min/mg of protein, respectively, for glucose 6-phosphate and 0.095 +/- 0.013 mM and 2,035 +/- 98 nmol/min/mg of protein, respectively, for fructose 6-phosphate. The activity of phosphoglucose isomerase was inhibited intensely and competitively by 6-phosphogluconate, with an apparent Ki of 0.048 +/- 0.005 mM for glucose 6-phosphate and 0.042 +/- 0.004 mM for fructose 6-phosphate as the substrate. With glucose 6-phosphate as the substrate, at concentrations from 0.05 to 0.5 mM, the activity of the enzyme was inhibited completely in the presence of 0.5-2.0 mM 6-phosphogluconate. With 0.05-0.2 mM fructose 6-phosphate as the substrate, it was inhibited greater than or equal to 85% at the same concentrations of the inhibitor. No significant changes were observed in the values of Km, Vmax, and Ki for phosphoglucose isomerase in the brain of 6-aminonicotinamide-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
14.
In Vivo Elevation of Mouse Brain S-Adenosyl-L-Homocysteine after Treatment with L-Homocysteine 总被引:1,自引:1,他引:0
Intraperitoneal coadministration of adenosine and L-homocysteine markedly increased S-adenosyl-L-homocysteine in whole mouse brain, but further investigations showed that this elevation could also be produced following administration of L-homocysteine alone. The noted increase was maximal (+1325%) 10 min after treatment, remaining at about this level for 30-40 min before returning to control values after 180 min. Cerebral adenosine levels were decreased after treatment with L-homocysteine, adenosine, or these two substances in combination. 相似文献
15.
Cellular Origin of Ischemia-Induced Glutamate Release from Brain Tissue In Vivo and In Vitro 总被引:4,自引:17,他引:4
Jørgen Drejer Helene Benveniste Nils H. Diemer Arne Schousboe 《Journal of neurochemistry》1985,45(1):145-151
The uptake and release of D-[3H]aspartate (used as a tracer for endogenous glutamate and aspartate) were studied in cultured glutamatergic neurons (cerebellar granule cells) and astrocytes at normal (5 mM) or high (55 mM) potassium and under conditions of hypoglycemia, anoxia or "ischemia" (combined hypoglycemia and anoxia). In glutamatergic neurons it was found that "ischemic" conditions led to a 2.4-fold increase in the potassium-induced release of D-[3H]aspartate as compared to normal conditions. Hypoglycemia or anoxia alone affected the release only marginally. The ischemia-induced induced increase in the evoked D-[3H]aspartate release was shown to be calcium-dependent. In astrocytes no difference was found in the potassium-induced release between the four conditions and the K+-induced release was not calcium-dependent. The uptake of D-[3H]aspartate was found to be stimulated at high potassium in both glutamatergic neurons (98%) and in astrocytes (70%). This stimulation of D-aspartate uptake, however, was significantly reduced under conditions of anoxia or "ischemia" in both cell types. In glutamatergic neurons (but not in astrocytes) hypoglycemia also decreased the potassium stimulation of D-aspartate uptake. In a previous report it was shown, using the microdialysis technique, that during transient cerebral ischemia in vivo the extracellular glutamate content in hippocampus was increased eightfold. In the present paper it is shown that essentially no increase in extracellular glutamate is seen under ischemia when the perfusion is performed using calcium-free, cobalt-containing perfusion media. The results from the in vitro and in vivo experiments indicate that the glutamate accumulated extracellularly under ischemia in vivo originates from transmitter pools in glutamatergic neurons.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
16.
Jerzy W. Lazarewicz ers Lehmann† Henrik Hagberg ers Hamberger 《Journal of neurochemistry》1986,46(2):494-498
The effect of in vivo administration of kainic acid into the rabbit hippocampus was studied with brain dialysis and subsequent determination of the Ca2+ concentration in the dialysate. When included in the perfusing medium, kainic acid as well as veratridine induced a decrease in extracellular Ca2+. The effect of kainic acid (but not of veratridine) was insensitive to tetrodotoxin. In vitro studies revealed no effect of kainic acid on 45Ca2+ uptake by isolated astrocytes, but showed an enhancement of synaptosomal 45Ca2+ accumulation. This was, however, only 25% of the stimulatory effect of high K+ depolarization. Glutamate activated synaptosomal Ca2+ uptake, whereas dihydrokainate had no effect. The uptake evoked by kainate and glutamate was independent of the K+ level in the medium which indicates the involvement of other than voltage-sensitive Ca2+ channels. The results confirm previous finding that kainic acid promotes the uptake of Ca2+ in brain cells. Kainate affects Ca2+ fluxes pre- and postsynaptically. Presynaptic Ca2+ influx may be mediated by chemically gated mechanisms. 相似文献
17.
18.
Stefan J. Kempf Sonja Buratovic Christine von Toerne Simone Moertl Bo Stenerl?w Stefanie M. Hauck Michael J. Atkinson Per Eriksson Soile Tapio 《PloS one》2014,9(10)
Patients suffering from brain malignancies are treated with high-dose ionising radiation. However, this may lead to severe learning and memory impairment. Preventive treatments to minimise these side effects have not been possible due to the lack of knowledge of the involved signalling pathways and molecular targets. Mouse hippocampal neuronal HT22 cells were irradiated with acute gamma doses of 0.5 Gy, 1.0 Gy and 4.0 Gy. Changes in the cellular proteome were investigated by isotope-coded protein label technology and tandem mass spectrometry after 4 and 24 hours. To compare the findings with the in vivo response, male NMRI mice were irradiated on postnatal day 10 with a gamma dose of 1.0 Gy, followed by evaluation of the cellular proteome of hippocampus and cortex 24 hours post-irradiation. Analysis of the in vitro proteome showed that signalling pathways related to synaptic actin-remodelling were significantly affected at 1.0 Gy and 4.0 Gy but not at 0.5 Gy after 4 and 24 hours. We observed radiation-induced reduction of the miR-132 and Rac1 levels; miR-132 is known to regulate Rac1 activity by blocking the GTPase-activating protein p250GAP. In the irradiated hippocampus and cortex we observed alterations in the signalling pathways similar to those in vitro. The decreased expression of miR-132 and Rac1 was associated with an increase in hippocampal cofilin and phospho-cofilin. The Rac1-Cofilin pathway is involved in the modulation of synaptic actin filament formation that is necessary for correct spine and synapse morphology to enable processes of learning and memory. We suggest that acute radiation exposure leads to rapid dendritic spine and synapse morphology alterations via aberrant cytoskeletal signalling and processing and that this is associated with the immediate neurocognitive side effects observed in patients treated with ionising radiation. 相似文献
19.
In Vivo and In Vitro Synthesis of Human Rhinovirus Type 2 Ribonucleic Acid 总被引:8,自引:8,他引:0 下载免费PDF全文
HeLa cells infected with human rhinovirus type 2 synthesize a mixture of single-and double-stranded ribonucleic acid (RNA). The RNA synthesized by the membrane-bound RNA polymerase complex in vitro is also a mixture of single- and double-stranded RNA, whereas the deoxycholate-treated RNA polymerase complex synthesized only double-stranded RNA. Although twice as much cell-associated viral RNA is synthesized in vivo at 34 C than at 37 C, there is no difference in the rate of RNA synthesized in vitro at 34 C and 37 C by the polymerase complex. The RNA polymerase complex, after treatment with deoxycholate, sediments as a broad peak with an average sedimentation value of 120S. 相似文献
20.
Modulation in Acetylcholinesterase of Rat Brain by Pyrethroids In Vivo and an In Vitro Kinetic Study
Abstract: The modulation in acetylcholinesterase (AChE) of rat brain by two pyrethroids—permethrin (PM) and cypermethrin (CPM)—was studied both in vivo and in vitro. PM inhibited AChE activity in all regions of the rat brain (cerebral cortex, cerebellum, corpora striata, brainstem, hippocampus, and hypothalamus) at 4, 8, and 12 h after gastric intubation, whereas CPM elevated the enzyme activity in vivo. Substrate-dependent enzyme kinetic studies have shown that PM and CPM behave as mixed-type inhibitors, as evidenced by alterations in both Michaelis-Menten constant ( K m ) and maximal velocity ( V max ) values. This indicates that both PM and CPM and substrate acetylcholine interact at hydrophobic subsites and may be able to bind simultaneously to the enzyme. 相似文献