首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Francisella tularensis is the causative agent of tularemia and is a category A select agent. Francisella novicida, considered by some to be one of four subspecies of F. tularensis, is used as a model in pathogenesis studies because it causes a disease similar to tularemia in rodents but is not harmful to humans. F. novicida exhibits a strong restriction barrier which reduces the transformation frequency of foreign DNA up to 10(6)-fold. To identify the genetic basis of this barrier, we carried out a mutational analysis of restriction genes identified in the F. novicida genome. Strains carrying combinations of insertion mutations in eight candidate loci were created and assayed for reduced restriction of unmodified plasmid DNA introduced by transformation. Restriction was reduced by mutations in four genes, corresponding to two type I, one type II, and one type III restriction system. Restriction was almost fully eliminated in a strain in which all four genes were inactive. The strongest contributor to the restriction barrier, the type II gene, encodes an enzyme which specifically cleaves Dam-methylated DNA. Genome comparisons show that most restriction genes in the F. tularensis subspecies are pseudogenes, explaining the unusually strong restriction barrier in F. novicida and suggesting that restriction was lost during evolution of the human pathogenic subspecies. As part of this study, procedures were developed to introduce unmodified plasmid DNA into F. novicida efficiently, to generate defined multiple mutants, and to produce chromosomal deletions of multiple adjacent genes.  相似文献   

2.
3.
4.
Liu J  Zogaj X  Barker JR  Klose KE 《BioTechniques》2007,43(4):487-90, 492
Francisella tularensis is one of the most deadly bacterial agents, yet most of the genetic determinants of pathogenesis are still unknown. We have developed an efficient targeted mutagenesis strategy in the model organism F. tularensis subsp. novicida by utilizing universal priming of optimized antibiotic resistance cassettes and splicing by overlap extension (SOE). This process enables fast and efficient construction of targeted insertion mutations in F. tularensis subsp. novicida that have characteristics of nonpolar mutations; optimized targeted mutagenesis strategies will promote the study of this mysterious bacterium and facilitate vaccine development against tularemia. Moreover the general strategy of gene disruption by PCR-based antibiotic resistance cassette insertion is broadly applicable to many bacterial species.  相似文献   

5.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, was shown to produce a lipopolysaccharide in which the antigenic O-polysaccharide component was found by chemical, 1H and 13C NMR and MS analyses to be an unbranched neutral linear polymer of a repeating tetrasaccharide unit composed of 2-acetamido-2-deoxy-D-galacturonamide (D-GalNAcAN) and 2,4-diacetamido-2,4,6-trideoxy-D-glucose (D-Qui2NAc4NAc, di-N-acetylbacillosamine) residues (3:1) and had the structure: -->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->4)-alpha-D-GalNAcAN-(1-->3)-alpha-D-QuiNAc4NAc-(1-->. With polyclonal murine antibody, the F. novicida O-antigen did not show serological cross-reactivity with the O-antigen of F. tularensis despite the occurrence of a common -->4)-D-GalpNAcAN-(1-->4)-alpha-D-GalpNAcAN-(1--> disaccharide unit in their respective O-antigens. Thus, O-PS serology offers a practical way to distinguish between the two Francisella species.  相似文献   

6.
Dengue viruses (DENV) cause debilitating and potentially life-threatening acute disease throughout the tropical world. While drug development efforts are underway, there are concerns that resistant strains will emerge rapidly. Indeed, antiviral drugs that target even conserved regions in other RNA viruses lose efficacy over time as the virus mutates. Here, we sought to determine if there are regions in the DENV genome that are not only evolutionarily conserved but genetically constrained in their ability to mutate and could hence serve as better antiviral targets. High-throughput sequencing of DENV-1 genome directly from twelve, paired dengue patients’ sera and then passaging these sera into the two primary mosquito vectors showed consistent and distinct sequence changes during infection. In particular, two residues in the NS5 protein coding sequence appear to be specifically acquired during infection in Ae. aegypti but not Ae. albopictus. Importantly, we identified a region within the NS3 protein coding sequence that is refractory to mutation during human and mosquito infection. Collectively, these findings provide fresh insights into antiviral targets and could serve as an approach to defining evolutionarily constrained regions for therapeutic targeting in other RNA viruses.  相似文献   

7.
In order to identify genes involved in LPS biosynthesis we isolated random mutants generated by transposon insertion in Francisella novicida. The resulting mutant bank yielded mutants with three distinct LPS phenotypes, and three representative mutants were chosen for further study. One mutant that had short O-antigen chains was sensitive to serum; this mutant and one other were more sensitive to killing by deoxycholate than control strains. The third mutant was resistant to deoxycholate killing but slightly sensitive to serum. The three mutants varied in their ability to grow in macrophages. The DNA sequences interrupted by the transposon in two of the three mutants showed similarity to known LPS biosynthetic genes at the deduced amino acid level.  相似文献   

8.
Infection with the bacterial pathogen Francisella tularensis tularensis (F. tularensis) causes tularemia, a serious and debilitating disease. Francisella tularensis novicida strain U112 (abbreviated F. novicida), which is closely related to F. tularensis, is pathogenic for mice but not for man, making it an ideal model system for tularemia. Intracellular pathogens like Francisella inhibit the innate immune response, thereby avoiding immune recognition and death of the infected cell. Because activation of inflammatory pathways may lead to cell death, we reasoned that we could identify bacterial genes involved in inhibiting inflammation by isolating mutants that killed infected cells faster than the wild-type parent. We screened a comprehensive transposon library of F. novicida for mutant strains that increased the rate of cell death following infection in J774 macrophage-like cells, as compared to wild-type F. novicida. Mutations in 28 genes were identified as being hypercytotoxic to both J774 and primary macrophages of which 12 were less virulent in a mouse infection model. Surprisingly, we found that F. novicida with mutations in four genes (lpcC, manB, manC and kdtA) were taken up by and killed macrophages at a much higher rate than the parent strain, even upon treatment with cytochalasin D (cytD), a classic inhibitor of macrophage phagocytosis. At least 10-fold more mutant bacteria were internalized by macrophages as compared to the parent strain if the bacteria were first fixed with formaldehyde, suggesting a surface structure is required for the high phagocytosis rate. However, bacteria were required to be viable for macrophage toxicity. The four mutant strains do not make a complete LPS but instead have an exposed lipid A. Interestingly, other mutations that result in an exposed LPS core were not taken up at increased frequency nor did they kill host cells more than the parent. These results suggest an alternative, more efficient macrophage uptake mechanism for Francisella that requires exposure of a specific bacterial surface structure(s) but results in increased cell death following internalization of live bacteria.  相似文献   

9.
Francisella tularensis and related intracellular pathogens synthesize lipid A molecules that differ from their Escherichia coli counterparts. Although a functional orthologue of lpxK, the gene encoding the lipid A 4'-kinase, is present in Francisella, no 4'-phosphate moiety is attached to Francisella lipid A. We now demonstrate that a membrane-bound phosphatase present in Francisella novicida U112 selectively removes the 4'-phosphate residue from tetra- and pentaacylated lipid A molecules. A clone that expresses the F. novicida 4'-phosphatase was identified by assaying lysates of E. coli colonies, harboring members of an F. novicida genomic DNA library, for 4'-phosphatase activity. Sequencing of a 2.5-kb F. novicida DNA insert from an active clone located the structural gene for the 4'-phosphatase, designated lpxF. It encodes a protein of 222 amino acid residues with six predicted membrane-spanning segments. Rhizobium leguminosarum and Rhizobium etli contain functional lpxF orthologues, consistent with their lipid A structures. When F. novicida LpxF is expressed in an E. coli LpxM mutant, a strain that synthesizes pentaacylated lipid A, over 90% of the lipid A molecules are dephosphorylated at the 4'-position. Expression of LpxF in wild-type E. coli has no effect, because wild-type hexaacylated lipid A is not a substrate. However, newly synthesized lipid A is not dephosphorylated in LpxM mutants by LpxF when the MsbA flippase is inactivated, indicating that LpxF faces the outer surface of the inner membrane. The availability of the lpxF gene will facilitate re-engineering lipid A structures in diverse bacteria.  相似文献   

10.
Francisella spp. are highly infectious and virulent bacteria that cause the zoonotic disease tularemia. Knowledge is lacking for the virulence factors expressed by Francisella and how these factors are secreted and delivered to host cells. Gram-negative bacteria constitutively release outer membrane vesicles (OMV), which may function in the delivery of virulence factors to host cells. We identified growth conditions under which Francisella novicida produces abundant OMV. Purification of the vesicles revealed the presence of tube-shaped vesicles in addition to typical spherical OMV, and examination of whole bacteria revealed the presence of tubes extending out from the bacterial surface. Recently, both prokaryotic and eukaryotic cells have been shown to produce membrane-enclosed projections, termed nanotubes, which appear to function in cell-cell communication and the exchange of molecules. In contrast to these previously characterized structures, the F. novicida tubes are produced in liquid as well as on solid medium and are derived from the OM rather than the cytoplasmic membrane. The production of the OMV and tubes (OMV/T) by F. novicida was coordinately regulated and responsive to both growth medium and growth phase. Proteomic analysis of purified OMV/T identified known Francisella virulence factors among the constituent proteins, suggesting roles for the vesicles in pathogenesis. In support of this, production of OM tubes by F. novicida was stimulated during infection of macrophages and addition of purified OMV/T to macrophages elicited increased release of proinflammatory cytokines. Finally, vaccination with purified OMV/T protected mice from subsequent challenge with highly lethal doses of F. novicida.  相似文献   

11.
Type six secretion systems (T6SSs) are found in many Gram-negative bacteria and are important for their virulence or their ecological competitiveness. The multicomponent T6SSs are responsible for the translocation of effector molecules into target eukaryotic or prokaryotic cells. The Francisella pathogenicity island encodes a putative T6SS that Francisella novicida requires for intramacrophage growth and virulence during infection of rodents. Here, we present the X-ray crystal structure of the conserved type six secretion component TssL (DotU) from F. novicida. The structure of this protein, which is referred to as Ftn_TssL, revealed an all-α-helical fold that is a unique fusion of two 3-helix bundles. The sequence of Ftn_TssL shows low identity to presumed homologs that are found in most T6SSs. The structure of Ftn_TssL, however, has allowed us to provide bioinformatics evidence that the F. novicida TssL has a fold that is very likely representative for TssL forms from both T6SSs and from the distantly related B subclass of type four secretion systems. A map of sequence conservation on the TssL structure revealed a surface-exposed groove that may represent a functional site on the protein.  相似文献   

12.
13.
Francisella tularensis is an important human pathogen responsible for causing tularemia. F. tularensis has long been developed as a biological weapon and is now classified as a category A agent by the Centers for Disease Control because of its possible use as a bioterror agent. F. tularensis represses inflammasome; a cytosolic multi-protein complex that activates caspase-1 to produce proinflammatory cytokines IL-1β and IL-18. However, the Francisella factors and the mechanisms through which F. tularensis mediates these suppressive effects remain relatively unknown. Utilizing a mutant of F. tularensis in FTL_0325 gene, this study investigated the mechanisms of inflammasome repression by F. tularensis. We demonstrate that muted IL-1β and IL-18 responses generated in macrophages infected with F. tularensis live vaccine strain (LVS) or the virulent SchuS4 strain are due to a predominant suppressive effect on TLR2-dependent signal 1. Our results also demonstrate that FTL_0325 of F. tularensis impacts proIL-1β expression as early as 2 h post-infection and delays activation of AIM2 and NLRP3-inflammasomes in a TLR2-dependent fashion. An enhanced activation of caspase-1 and IL-1β observed in FTL_0325 mutant-infected macrophages at 24 h post-infection was independent of both AIM2 and NLRP3. Furthermore, F. tularensis LVS delayed pyroptotic cell death of the infected macrophages in an FTL_0325-dependent manner during the early stages of infection. In vivo studies in mice revealed that suppression of IL-1β by FTL_0325 early during infection facilitates the establishment of a fulminate infection by F. tularensis. Collectively, this study provides evidence that F. tularensis LVS represses inflammasome activation and that F. tularensis-encoded FTL_0325 mediates this effect.  相似文献   

14.
Francisella novicida (U112), a close relative of the highly virulent bacterium F. tularensis, is known to produce a lipopolysaccharide that is significantly different in biological properties from the LPS of F. tularensis. Here we present the results of the structural analysis of the F. novicida LPS core part, which is found to be similar to that of F. tularensis, differing only by one additional alpha-Glc residue:where R is an O-chain, linked via a beta-bacillosamine (2,4-diamino-2,4,6-trideoxyglucose) residue. The lipid part of F. novicida LPS contains no phosphate substituent and apparently has a free reducing end, a feature also noted in F. tularensis LPS.  相似文献   

15.
Zotova  A. A.  Atemasova  A. A.  Filatov  A. V.  Mazurov  D. V. 《Molecular Biology》2019,53(2):212-226
Molecular Biology - Currently, more than 37 million individuals worldwide are infected with the human immunodeficiency virus (HIV). Antiretroviral therapy may control the viral infection but is...  相似文献   

16.
Francisella tularensis causes the zoonosis tularemia in humans and is one of the most virulent bacterial pathogens. We utilized a global proteomic approach to characterize protein changes in bronchoalveolar lavage fluid from mice exposed to one of three organisms, F. tularensis ssp. novicida, an avirulent mutant of F. tularensis ssp. novicida (F.t. novicida-ΔmglA), and Pseudomonas aeruginosa. The composition of bronchoalveolar lavage fluid (BALF) proteins was altered following infection, including proteins involved in neutrophil activation, oxidative stress, and inflammatory responses. Components of the innate immune response were induced including the acute phase response and the complement system; however, the timing of their induction varied. F. tularensis ssp. novicida infected mice do not appear to have an effective innate immune response in the first hours of infection; however, within 24 h, they show an upregulation of innate immune response proteins. This delayed response is in contrast to P. aeruginosa infected animals which show an early innate immune response. Likewise, F.t. novicida-ΔmglA infection initiates an early innate immune response; however, this response is diminished by 24 h. Finally, this study identifies several candidate biomarkers, including Chitinase 3-like-1 (CHI3L1 or YKL-40) and peroxiredoxin 1, that are associated with F. tularensis ssp. novicida but not P. aeruginosa infection.  相似文献   

17.
BackgroundPlasmodium vivax is the most widely distributed human malaria parasite with 2.9 billion people living in endemic areas. Despite intensive malaria control efforts, the proportion of cases attributed to P. vivax is increasing in many countries. Genetic analyses of the parasite population and its dynamics could provide an assessment of the efficacy of control efforts, but, unfortunately, these studies are limited in P. vivax by the lack of informative markers and high-throughput genotyping methods.Conclusions/SignificanceOur findings demonstrate that this high-throughput genotyping assay is efficient in characterizing P. vivax diversity and can provide valuable insights to assess the efficacy of malaria elimination programs or to monitor the spread of specific parasites.  相似文献   

18.
The proteins expressed by Francisella tularensis subsp. novicida U112 grown to midexponential phase were surveyed by nanoLC-tandem mass spectrometry (LC-MS/MS). To improve annotation of the genome and develop a technology to provide high-throughput analysis of the Francisella proteome in multiple conditions, we sought to establish a fast and simple analysis that would reduce as much as possible the false discovery rate. Our survey detected expression of 63.0% of the predicted proteome from the stable condition of growth in rich medium available at (www.francisella.org). On the basis of detection of essential proteins, we estimated coverage to be approximately 80% of the actual expressed proteome. This suggests that no less than 70% of the proteins could be expressed in this condition. This analysis revealed two previously unidentified protein coding open reading frames and validated 50% of the proteins annotated as hypothetical. On the basis of results of the screen to detect essential proteins, not all proteins expressed provide a measurable contribution to F.t. novicida growth in this condition. Comparison of this protein profile with other profiles previously published suggested that the genome size and number of genes involved in regulation have little effect on the number of proteins expressed in a given stable condition.  相似文献   

19.
We explored possible links between vector activity and genetic diversity in introduced populations of Limnoperna fortunei by characterizing the genetic structure in native and introduced ranges in Asia and South America. We surveyed 24 populations: ten in Asia and 14 in South America using the mitochondrial cytochrome c oxidase subunit I (COI) gene, as well as eight polymorphic microsatellite markers. We performed population genetics and phylogenetic analyses to investigate population genetic structure across native and introduced regions. Introduced populations in Asia exhibit higher genetic diversity (H E = 0.667–0.746) than those in South America (H E = 0.519–0.575), suggesting higher introduction effort for the former populations. We observed pronounced geographical structuring in introduced regions, as indicated by both mitochondrial and nuclear markers based on multiple genetic analyses including pairwise ФST, F ST, Bayesian clustering method, and three-dimensional factorial correspondence analyses. Pairwise F ST values within both Asia (F ST = 0.017–0.126, P = 0.000–0.009) and South America (F ST = 0.004–0.107, P = 0.000–0.721) were lower than those between continents (F ST = 0.180–0.319, P = 0.000). Fine-scale genetic structuring was also apparent among introduced populations in both Asia and South America, suggesting either multiple introductions of distinct propagules or strong post-introduction selection and demographic stochasticity. Higher genetic diversity in Asia as compared to South America is likely due to more frequent propagule transfers associated with higher shipping activities between source and donor regions within Asia. This study suggests that the intensity of human-mediated introduction vectors influences patterns of genetic diversity in non-indigenous species.  相似文献   

20.
Gram-negative bacteria have evolved sophisticated secretion machineries specialized for the secretion of macromolecules important for their life cycles. The Type VI secretion system (T6SS) is the most widely spread bacterial secretion machinery and is encoded by large, variable gene clusters, often found to be essential for virulence. The latter is true for the atypical T6SS encoded by the Francisella pathogenicity island (FPI) of the highly pathogenic, intracellular bacterium Francisella tularensis. We here undertook a comprehensive analysis of the intramacrophage secretion of the 17 FPI proteins of the live vaccine strain, LVS, of F. tularensis. All were expressed as fusions to the TEM β-lactamase and cleavage of the fluorescent substrate CCF2-AM, a direct consequence of the delivery of the proteins into the macrophage cytosol, was followed over time. The FPI proteins IglE, IglC, VgrG, IglI, PdpE, PdpA, IglJ and IglF were all secreted, which was dependent on the core components DotU, VgrG, and IglC, as well as IglG. In contrast, the method was not directly applicable on F. novicida U112, since it showed very intense native β-lactamase secretion due to FTN_1072. Its role was proven by ectopic expression in trans in LVS. We did not observe secretion of any of the LVS substrates VgrG, IglJ, IglF or IglI, when tested in a FTN_1072 deficient strain of F. novicida, whereas IglE, IglC, PdpA and even more so PdpE were all secreted. This suggests that there may be fundamental differences in the T6S mechanism among the Francisella subspecies. The findings further corroborate the unusual nature of the T6SS of F. tularensis since almost all of the identified substrates are unique to the species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号