首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inhibitor of κB kinase (IKK) gamma (IKKγ), also referred to as nuclear factor κB (NF-κB) essential modulator (NEMO), is an important component of the IKK complex. Following the exposure of cells to NF-κB-inducing stimuli, the IKK complex catalyzes the phosphorylation of inhibitor of κB (IκB) proteins, which is a critical step that leads to the activation of NF-κB via the canonical pathway. The exact functions of IKKγ as part of the IKK complex have not been fully elucidated. A number of proteins have been identified as directly interacting with IKKγ and modulating the activity of the IKK complex. This mini review covers eight proteins that have been reported to bind to IKKγ and lead to the suppression of the activities of the IKK complex and hence result in the down-regulation of the activation of NF-κB. The reported mechanisms by which these interactions suppress the activation of the IKK complex include the deubiquitination of IKKγ and competition with upstream activators for binding to IKKγ.  相似文献   

2.
Canonical activation of NF-kappa B is mediated via phosphorylation of the inhibitory I kappa B proteins by the I kappa B kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta subunits and a presumed regulatory protein termed NEMO (NF-kappa B essential modulator) or IKK gamma. NEMO/IKK gamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappa B activator) as a NEMO/IKK gamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappa B activation in a complex with TANK-binding kinase 1 (TBK1) or IKK epsilon, two kinases distantly related to IKK alpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKK epsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKK gamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKK epsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappa B activation.  相似文献   

3.
4.
NEMO is an essential regulatory component of the IκB kinase (IKK) complex, which controls activation of the NF-κB signaling pathway. Herein, we show that NEMO exists as a disulfide-bonded dimer when isolated from several cell types and analyzed by SDS-polyacrylamide gel electrophoresis under non-reducing conditions. Treatment of cells with hydrogen peroxide (H2O2) induces further formation of NEMO dimers. Disulfide bond-mediated formation of NEMO dimers requires Cys54 and Cys347. The ability of these residues to form disulfide bonds is consistent with their location in a NEMO dimer structure that we generated by molecular modeling. We also show that pretreatment with H2O2 decreases TNFα-induced IKK activity in NEMO-reconstituted cells, and that TNFα has a diminished ability to activate NF-κB DNA binding in cells reconstituted with NEMO mutant C54/347A. This study implicates NEMO as a target of redox regulation and presents the first structural model for the NEMO protein.  相似文献   

5.
The IκB kinase (IKK) complex acts as a gatekeeper of canonical NF-κB signaling in response to upstream stimulation. IKK activation requires sensing of ubiquitin chains by the essential IKK regulatory subunit IKKγ/NEMO. However, it has remained enigmatic whether NEMO binding to Lys-63-linked or linear ubiquitin chains is critical for triggering IKK activation. We show here that the NEMO C terminus, comprising the ubiquitin binding region and a zinc finger, has a high preference for binding to linear ubiquitin chains. However, immobilization of NEMO, which may be reminiscent of cellular oligomerization, facilitates the interaction with Lys-63 ubiquitin chains. Moreover, selective mutations in NEMO that abolish association with linear ubiquitin but do not affect binding to Lys-63 ubiquitin are only partially compromising NF-κB signaling in response to TNFα stimulation in fibroblasts and T cells. In line with this, TNFα-triggered expression of NF-κB target genes and induction of apoptosis was partially compromised by NEMO mutations that selectively impair the binding to linear ubiquitin chains. Thus, in vivo NEMO interaction with linear and Lys-63 ubiquitin chains is required for optimal IKK activation, suggesting that both type of chains are cooperating in triggering canonical NF-κB signaling.  相似文献   

6.
Wang K  Diao LH  Gong Y  Liu X  Li Y 《Cellular signalling》2012,24(8):1556-1564
NF-κB essential modulator (NEMO), the regulatory subunit of the IκB kinase (IKK) complex, is an essential adaptor both for inflammation stimuli and TCR-induced NF-κB activation. However, the exact mechanism of its function has not been fully understood. Here, we report that knockdown of NEMO by RNA interference in Jurkat E6.1 cells enhanced TCR-induced NF-κB report gene activity and IL-2 production by promotion of IκBα degradation and p65 nuclear translocation, whereas inhibited TNF-α and LPS-induced IκBα degradation without influencing the phosphorylation of MAPKs. In human primary T and Jurkat E6.1 cells, both CD3/CD28 and PMA/Ionomycin induced NF-κB activation showed a para-curve correlation with the dosage of small interfering RNA targeting NEMO (siNEMO): the NF-κB report gene activity was increased along with ascending doses of transfected siNEMO and reached the highest activity when knockdown about 70% of NEMO, then turned to decline and gradually be blocked once almost thoroughly knockdown of NEMO. Meanwhile, TNF-α induced NF-κB was always inhibited no matter how much NEMO was knockdown. Subcellular fractionation results suggested that upon CD3/CD28 costimulation, NEMO and IKKβ may not cotranslocate to cytoskeleton fraction as a conventional NEMO/IKK complex with a static stoichiometric ratio, instead the ratio of NEMO: IKKβ continuously shift from high to low. Depletion of NEMO accelerated TCR-induced cytoskeleton translocation of IKKβ. Altogether, this study suggests that NEMO may function as a rheostat exerting a negative action on TCR-induced NF-κB activation and differentially regulates TNF-α and TCR-induced NF-κB pathways.  相似文献   

7.
Skaug B  Chen J  Du F  He J  Ma A  Chen ZJ 《Molecular cell》2011,44(4):559-571
A20 is a potent anti-inflammatory protein that inhibits NF-κB, and A20 dysfunction is associated with autoimmunity and B cell lymphoma. A20 harbors a deubiquitination enzyme domain and can employ multiple mechanisms to antagonize ubiquitination upstream of NEMO, a regulatory subunit of the IκB kinase complex (IKK). However, direct evidence of IKK inhibition by A20 is lacking, and the inhibitory mechanism remains poorly understood. Here we show that A20 can directly impair IKK activation without deubiquitination or impairment of ubiquitination enzymes. We find that polyubiquitin binding by A20, which is largely dependent on A20's seventh zinc-finger motif (ZnF7), induces specific binding to NEMO. Remarkably, this ubiquitin-induced recruitment of A20 to NEMO is sufficient to block IKK phosphorylation by its upstream kinase TAK1. Our results suggest a noncatalytic mechanism of IKK inhibition by A20 and a means by which polyubiquitin chains can specify a signaling outcome.  相似文献   

8.
9.
10.
Canonical NF-κB signaling through the inhibitor of κB kinase (IKK) complex requires induction of IKK2/IKKβ subunit catalytic activity via specific phosphorylation within its activation loop. This process is known to be dependent upon the accessory ubiquitin (Ub)-binding subunit NF-κB essential modulator (NEMO)/IKKγ as well as poly-Ub chains. However, the mechanism through which poly-Ub binding serves to promote IKK catalytic activity is unclear. Here, we show that binding of NEMO/IKKγ to linear poly-Ub promotes a second interaction between NEMO/IKKγ and IKK2/IKKβ, distinct from the well-characterized interaction of the NEMO/IKKγ N terminus to the “NEMO-binding domain” at the C terminus of IKK2/IKKβ. We mapped the location of this second interaction to a stretch of roughly six amino acids immediately N-terminal to the zinc finger domain in human NEMO/IKKγ. We also showed that amino acid residues within this region of NEMO/IKKγ are necessary for binding to IKK2/IKKβ through this secondary interaction in vitro and for full activation of IKK2/IKKβ in cultured cells. Furthermore, we identified a docking site for this segment of NEMO/IKKγ on IKK2/IKKβ within its scaffold-dimerization domain proximal to the kinase domain–Ub-like domain. Finally, we showed that a peptide derived from this region of NEMO/IKKγ is capable of interfering specifically with canonical NF-κB signaling in transfected cells. These in vitro biochemical and cell culture–based experiments suggest that, as a consequence of its association with linear poly-Ub, NEMO/IKKγ plays a direct role in priming IKK2/IKKβ for phosphorylation and that this process can be inhibited to specifically disrupt canonical NF-κB signaling.  相似文献   

11.
Post-translational modifications of RelA play an important role in regulation of NF-κB activation. We previously demonstrated that in malignant hematopoietic cells, histone deacetylase inhibitors (HDACIs) induced RelA hyperacetylation and NF-κB activation, attenuating lethality. We now present evidence that IκB kinase (IKK) β-mediated RelA Ser-536 phosphorylation plays a significant functional role in promoting RelA acetylation, inducing NF-κB activation, and limiting HDACI lethality in human multiple myeloma (MM) cells. Immunoblot profiling revealed that although basal RelA phosphorylation varied in MM cells, Ser-536 phosphorylation correlated with IKK activity. Exposure to the pan-HDACIs vorinostat or LBH-589 induced phosphorylation of IKKα/β (Ser-180/Ser-181) and RelA (Ser-536) in MM cells, including cells expressing an IκBα "super-repressor," accompanied by increased RelA nuclear translocation, acetylation, DNA binding, and transactivation activity. These events were substantially blocked by either pan-IKK or IKKβ-selective inhibitors, resulting in marked apoptosis. Consistent with these events, inhibitory peptides targeting either the NF-κB essential modulator (NEMO) binding domain for IKK complex formation or RelA phosphorylation sites also significantly increased HDACI lethality. Moreover, IKKβ knockdown by shRNA prevented Ser-536 phosphorylation and significantly enhanced HDACI susceptibility. Finally, introduction of a nonphosphorylatable RelA mutant S536A, which failed to undergo acetylation in response to HDACIs, impaired NF-κB activation and increased cell death. These findings indicate that HDACIs induce Ser-536 phosphorylation of the NF-κB subunit RelA through an IKKβ-dependent mechanism, an action that is functionally involved in activation of the cytoprotective NF-κB signaling cascade primarily through facilitation of RelA acetylation rather than nuclear translocation.  相似文献   

12.
Ea CK  Deng L  Xia ZP  Pineda G  Chen ZJ 《Molecular cell》2006,22(2):245-257
The receptor interacting protein kinase 1 (RIP1) is essential for the activation of nuclear factor kappaB (NF-kappaB) by tumor necrosis factor alpha (TNFalpha). Here, we present evidence that TNFalpha induces the polyubiquitination of RIP1 at Lys-377 and that this polyubiquitination is required for the activation of IkappaB kinase (IKK) and NF-kappaB. A point mutation of RIP1 at Lys-377 (K377R) abolishes its polyubiquitination as well as its ability to restore IKK activation in a RIP1-deficient cell line. The K377R mutation of RIP1 also prevents the recruitment of TAK1 and IKK complexes to TNF receptor. Interestingly, polyubiquitinated RIP1 recruits IKK through the binding between the polyubiquitin chains and NEMO, a regulatory subunit of the IKK complex. Mutations of NEMO that disrupt its polyubiquitin binding also abolish IKK activation. These results reveal the biochemical mechanism underlying the essential signaling function of NEMO and provide direct evidence that signal-induced site-specific ubiquitination of RIP1 is required for IKK activation.  相似文献   

13.
14.
15.
16.
IKK gamma/NEMO is the essential regulatory subunit of the I kappa B kinase (IKK), encoded by an X-linked gene in mice and humans. It is required for NF-kappa B activation and resistance to TNF-induced apoptosis. Female mice heterozygous for Ikk gamma/Nemo deficiency develop a unique dermatopathy characterized by keratinocyte hyperproliferation, skin inflammation, hyperkeratosis, and increased apoptosis. Although Ikk gamma+/- females eventually recover, Ikk gamma- males die in utero. These symptoms and inheritance pattern are very similar to those of incontinentia pigmenti (IP), a human genodermatosis, synthenic with the IKK gamma/NEMO locus. Indeed, biopsies and cells from IP patients exhibit defective IKK gamma/NEMO expression but normal expression of IKK catalytic subunits. This unique self-limiting disease, the first to be genetically linked to the IKK signaling pathway, is dependent on X-chromosome inactivation. We propose that the IKK gamma/NEMO-deficient cells trigger an inflammatory reaction that eventually leads to their death.  相似文献   

17.
18.
The early host response to viral infections involves transient activation of pattern recognition receptors leading to an induction of inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor α (TNFα). Subsequent activation of cytokine receptors in an autocrine and paracrine manner results in an inflammatory cascade. The precise mechanisms by which viruses avert an inflammatory cascade are incompletely understood. Nuclear factor (NF)-κB is a central regulator of the inflammatory signaling cascade that is controlled by inhibitor of NF-κB (IκB) proteins and the IκB kinase (IKK) complex. In this study we show that murine cytomegalovirus inhibits the inflammatory cascade by blocking Toll-like receptor (TLR) and IL-1 receptor-dependent NF-κB activation. Inhibition occurs through an interaction of the viral M45 protein with the NF-κB essential modulator (NEMO), the regulatory subunit of the IKK complex. M45 induces proteasome-independent degradation of NEMO by targeting NEMO to autophagosomes for subsequent degradation in lysosomes. We propose that the selective and irreversible degradation of a central regulatory protein by autophagy represents a new viral strategy to dampen the inflammatory response.  相似文献   

19.
The nuclear factor-κB (NF-κB) plays an important role in inflammatory and immune responses. Aberrant NF-κB signaling is implicated in multiple disorders, including cancer. Targeting the regulatory scaffold subunit IκB kinase γ (IKKγ/NEMO) as therapeutic interventions could be promising due to its specific involvement in canonical NF-κB activation without interfering with non-canonical signaling. In this study, the use of unnatural amino acid substituted IKKβ with unique photophysical activity to sense water environment changes upon interaction with NEMO provides a powerful in vitro screening platform that would greatly facilitate the identification of compounds having the potential to disrupt IKKβ-NEMO interaction, and thus specifically modulate the canonical NF-κB pathway. We then utilized a competitive binding platform to screen the binding ability of a number of potential molecules being synthesized. Our results suggest that a lead compound (−)-PDC-099 is a potent agent with ascertained potency to disrupt IKKβ-NEMO complex for modulating NF-κB canonical pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号