首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15×10−94<P<5×10−8, odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2×10−23 < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.  相似文献   

2.
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA2 activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA2 activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA2 activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6×10−24); CELSR2/PSRC1 on chromosome 1 (p = 3×10−15); SCARB1 on chromosome 12 (p = 1×10−8) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4×10−8). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA2 mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA2 activity and mass.  相似文献   

3.
《PloS one》2012,7(12)
Genome-wide association studies (GWAS) have successfully identified a number of single-nucleotide polymorphisms (SNPs) associated with colorectal cancer (CRC) risk. However, these susceptibility loci known today explain only a small fraction of the genetic risk. Gene-gene interaction (GxG) is considered to be one source of the missing heritability. To address this, we performed a genome-wide search for pair-wise GxG associated with CRC risk using 8,380 cases and 10,558 controls in the discovery phase and 2,527 cases and 2,658 controls in the replication phase. We developed a simple, but powerful method for testing interaction, which we term the Average Risk Due to Interaction (ARDI). With this method, we conducted a genome-wide search to identify SNPs showing evidence for GxG with previously identified CRC susceptibility loci from 14 independent regions. We also conducted a genome-wide search for GxG using the marginal association screening and examining interaction among SNPs that pass the screening threshold (p<10−4). For the known locus rs10795668 (10p14), we found an interacting SNP rs367615 (5q21) with replication p = 0.01 and combined p = 4.19×10−8. Among the top marginal SNPs after LD pruning (n = 163), we identified an interaction between rs1571218 (20p12.3) and rs10879357 (12q21.1) (nominal combined p = 2.51×10−6; Bonferroni adjusted p = 0.03). Our study represents the first comprehensive search for GxG in CRC, and our results may provide new insight into the genetic etiology of CRC.  相似文献   

4.
Dyslipidemia is a strong risk factor for cardiovascular disease among patients with type 2 diabetes (T2D). The aim of this study was to identify lipid-related genetic variants in T2D patients of Han Chinese ancestry. Among 4,908 Chinese T2D patients who were not taking lipid-lowering medications, single nucleotide polymorphisms (SNPs) in seven genes previously found to be associated with lipid traits in genome-wide association studies conducted in populations of European ancestry (ABCA1, GCKR, BAZ1B, TOMM40, DOCK7, HNF1A, and HNF4A) were genotyped. After adjusting for multiple covariates, SNPs in ABCA1, GCKR, BAZ1B, TOMM40, and HNF1A were identified as significantly associated with triglyceride levels in T2D patients (P < 0.05). The associations between the SNPs in ABCA1 (rs3890182), GCKR (rs780094), and BAZ1B (rs2240466) remained significant even after correction for multiple testing (P = 8.85×10−3, 7.88×10−7, and 2.03×10−6, respectively). BAZ1B (rs2240466) also was associated with the total cholesterol level (P = 4.75×10−2). In addition, SNP rs157580 in TOMM40 was associated with the low-density lipoprotein cholesterol level (P = 6.94×10−3). Our findings confirm that lipid-related genetic loci are associated with lipid profiles in Chinese patients with type 2 diabetes.  相似文献   

5.
The presence of oligoclonal bands (OCB) in cerebrospinal fluid (CSF) is a typical finding in multiple sclerosis (MS). We applied data from Norwegian, Swedish and Danish (i.e. Scandinavian) MS patients from a genome-wide association study (GWAS) to search for genetic differences in MS relating to OCB status. GWAS data was compared in 1367 OCB positive and 161 OCB negative Scandinavian MS patients, and nine of the most associated SNPs were genotyped for replication in 3403 Scandinavian MS patients. HLA-DRB1 genotypes were analyzed in a subset of the OCB positive (n = 2781) and OCB negative (n = 292) MS patients and compared to 890 healthy controls. Results from the genome-wide analyses showed that single nucleotide polymorphisms (SNPs) from the HLA complex and six other loci were associated to OCB status. In SNPs selected for replication, combined analyses showed genome-wide significant association for two SNPs in the HLA complex; rs3129871 (p = 5.7×10−15) and rs3817963 (p = 5.7×10−10) correlating with the HLA-DRB1*15 and the HLA-DRB1*04 alleles, respectively. We also found suggestive association to one SNP in the Calsyntenin-2 gene (p = 8.83×10−7). In HLA-DRB1 analyses HLA-DRB1*15∶01 was a stronger risk factor for OCB positive than OCB negative MS, whereas HLA-DRB1*04∶04 was associated with increased risk of OCB negative MS and reduced risk of OCB positive MS. Protective effects of HLA-DRB1*01∶01 and HLA-DRB1*07∶01 were detected in both groups. The groups were different with regard to age at onset (AAO), MS outcome measures and gender. This study confirms both shared and distinct genetic risk for MS subtypes in the Scandinavian population defined by OCB status and indicates different clinical characteristics between the groups. This suggests differences in disease mechanisms between OCB negative and OCB positive MS with implications for patient management, which need to be further studied.  相似文献   

6.
In order to investigate whether DNA methylation marks could contribute to the incomplete penetrance of the FV Leiden mutation, a major genetic risk factor for venous thrombosis (VT), we measured genome-wide DNA methylation levels in peripheral blood samples of 98 VT patients carrying the mutation and 251 VT patients without the mutation using the dedicated Illumina HumanMethylation450 array. The genome-wide analysis of 388,120 CpG probes identified three sites mapping to the SLC19A2 locus whose DNA methylation levels differed significantly (p<3 10−8) between carriers and non-carriers. The three sites replicated (p<2 10−7) in an independent sample of 214 individuals from five large families ascertained on VT and FV Leiden mutation among which 53 were carriers and 161 were non-carriers of the mutation. In both studies, these three CpG sites were also associated (2.33 10−11<p<3.02 10−4) with biomarkers of the Protein C pathway known to be influenced by the FV Leiden mutation. A comprehensive linkage disequilibrium (LD) analysis of the whole locus revealed that the original associations were due to LD between the FV Leiden mutation and a block of single nucleotide polymorphisms (SNP) located in SLC19A2. After adjusting for this block of SNPs, the FV Leiden mutation was no longer associated with any CpG site (p>0.05). In conclusion, our work clearly illustrates some promises and pitfalls of DNA methylation investigations on peripheral blood DNA in large epidemiological cohorts. DNA methylation levels at SLC19A2 are influenced by SNPs in LD with FV Leiden, but these DNA methylation marks do not explain the incomplete penetrance of the FV Leiden mutation.  相似文献   

7.
8.
Necrotizing meningoencephalitis (NME) affects toy and small breed dogs causing progressive, often fatal, inflammation and necrosis in the brain. Genetic risk loci for NME previously were identified in pug dogs, particularly associated with the dog leukocyte antigen (DLA) class II complex on chromosome 12, but have not been investigated in other susceptible breeds. We sought to evaluate Maltese and Chihuahua dogs, in addition to pug dogs, to identify novel or shared genetic risk factors for NME development. Genome-wide association testing of single nucleotide polymorphisms (SNPs) in Maltese dogs with NME identified 2 regions of genome-wide significance on chromosomes 4 (chr4:74522353T>A, p = 8.1×10−7) and 15 (chr15:53338796A>G, p = 1.5×10−7). Haplotype analysis and fine-mapping suggests that ILR7 and FBXW7, respectively, both important for regulation of immune system function, could be the underlying associated genes. Further evaluation of these regions and the previously identified DLA II locus across all three breeds, revealed an enrichment of nominal significant SNPs associated with chromosome 15 in pug dogs and DLA II in Maltese and Chihuahua dogs. Meta-analysis confirmed effect sizes the same direction in all three breeds for both the chromosome 15 and DLA II loci (p = 8.6×10–11 and p = 2.5×10−7, respectively). This suggests a shared genetic background exists between all breeds and confers susceptibility to NME, but effect sizes might be different among breeds. In conclusion, we identified the first genetic risk factors for NME development in the Maltese, chromosome 4 and chromosome 15, and provide evidence for a shared genetic risk between breeds associated with chromosome 15 and DLA II. Last, DLA II and IL7R both have been implicated in human inflammatory diseases of the central nervous system such as multiple sclerosis, suggesting that similar pharmacotherapeutic targets across species should be investigated.  相似文献   

9.
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P≤5×10−8). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P≤0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2×10−19 for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9×10−8, n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5×10−6, n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2×10−3, n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.  相似文献   

10.
To date, eleven genome-wide significant (GWS) loci (P < 5×10−8) for polycystic ovary syndrome (PCOS) have been identified through genome-wide association studies (GWAS). Some of the risk loci have been selected for replications and validated in multiple ethnicities, however, few previous studies investigated all loci. Scanning all the GWAS variants would demonstrate a more informative profile of variance they explained. Thus, we analyzed all the 17 single nucleotide polymorphisms (SNPs) mapping to the 11 GWAS loci in an independent sample set of 800 Chinese subjects with PCOS and 1110 healthy controls systematically. Variants of rs3802457 in C9orf3 locus (P = 5.99×10−4) and rs13405728 in LHCGR locus (P = 3.73×10−4) were significantly associated with PCOS after the strict Bonferroni correction in our data set. The further haplotype analysis indicated that in the block of C9orf3 gene (rs4385527 and rs3802457), GA haplotype played a protective role in PCOS (8.7 vs 5.0, P = 9.85×10−6, OR = 0.548, 95%CI = 0.418–0.717), while GG haplotype was found suffering from an extraordinarily increased risk of PCOS (73.6% vs79.2%, P = 3.41×10−5, OR = 1.394, 95%CI = 1.191–1.632). Moreover, the directions of effects for all SNPs were consistent with previous GWAS reports (P = 1.53×10−5). Polygenic score analysis demonstrated that these 17 SNPs have a significant capacity on predicting case-control status in our samples (P = 7.17×10−9), meanwhile all these gathered 17 SNPs explained about 2.40% of variance. Our findings supported that C9orf3 and LHCGR loci variants were vital susceptibility of PCOS.  相似文献   

11.
Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10−6 were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10−8 for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10−8 for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10−8; RREB1: p = 5.7×10−8). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.  相似文献   

12.
Although more than 20 genetic susceptibility loci have been reported for type 2 diabetes (T2D), most reported variants have small to moderate effects and account for only a small proportion of the heritability of T2D, suggesting that the majority of inter-person genetic variation in this disease remains to be determined. We conducted a multistage, genome-wide association study (GWAS) within the Asian Consortium of Diabetes to search for T2D susceptibility markers. From 590,887 SNPs genotyped in 1,019 T2D cases and 1,710 controls selected from Chinese women in Shanghai, we selected the top 2,100 SNPs that were not in linkage disequilibrium (r2<0.2) with known T2D loci for in silico replication in three T2D GWAS conducted among European Americans, Koreans, and Singapore Chinese. The 5 most promising SNPs were genotyped in an independent set of 1,645 cases and 1,649 controls from Shanghai, and 4 of them were further genotyped in 1,487 cases and 3,316 controls from 2 additional Chinese studies. Consistent associations across all studies were found for rs1359790 (13q31.1), rs10906115 (10p13), and rs1436955 (15q22.2) with P-values (per allele OR, 95%CI) of 6.49×10−9 (1.15, 1.10–1.20), 1.45×10−8 (1.13, 1.08–1.18), and 7.14×10−7 (1.13, 1.08–1.19), respectively, in combined analyses of 9,794 cases and 14,615 controls. Our study provides strong evidence for a novel T2D susceptibility locus at 13q31.1 and the presence of new independent risk variants near regions (10p13 and 15q22.2) reported by previous GWAS.  相似文献   

13.
The contribution of common genetic variation to one or more established smoking behaviors was investigated in a joint analysis of two genome wide association studies (GWAS) performed as part of the Cancer Genetic Markers of Susceptibility (CGEMS) project in 2,329 men from the Prostate, Lung, Colon and Ovarian (PLCO) Trial, and 2,282 women from the Nurses'' Health Study (NHS). We analyzed seven measures of smoking behavior, four continuous (cigarettes per day [CPD], age at initiation of smoking, duration of smoking, and pack years), and three binary (ever versus never smoking, ≤10 versus >10 cigarettes per day [CPDBI], and current versus former smoking). Association testing for each single nucleotide polymorphism (SNP) was conducted by study and adjusted for age, cohabitation/marital status, education, site, and principal components of population substructure. None of the SNPs achieved genome-wide significance (p<10−7) in any combined analysis pooling evidence for association across the two studies; we observed between two and seven SNPs with p<10−5 for each of the seven measures. In the chr15q25.1 region spanning the nicotinic receptors CHRNA3 and CHRNA5, we identified multiple SNPs associated with CPD (p<10−3), including rs1051730, which has been associated with nicotine dependence, smoking intensity and lung cancer risk. In parallel, we selected 11,199 SNPs drawn from 359 a priori candidate genes and performed individual-gene and gene-group analyses. After adjusting for multiple tests conducted within each gene, we identified between two and five genes associated with each measure of smoking behavior. Besides CHRNA3 and CHRNA5, MAOA was associated with CPDBI (gene-level p<5.4×10−5), our analysis provides independent replication of the association between the chr15q25.1 region and smoking intensity and data for multiple other loci associated with smoking behavior that merit further follow-up.  相似文献   

14.

Background

Adverse neurodevelopmental sequelae are reported among children who undergo early cardiac surgery to repair congenital heart defects (CHD). APOE genotype has previously been determined to contribute to the prediction of these outcomes. Understanding further genetic causes for the development of poor neurobehavioral outcomes should enhance patient risk stratification and improve both prevention and treatment strategies.

Methods

We performed a prospective observational study of children who underwent cardiac surgery before six months of age; this included a neurodevelopmental evaluation between their fourth and fifth birthdays. Attention and behavioral skills were assessed through parental report utilizing the Attention Deficit-Hyperactivity Disorder-IV scale preschool edition (ADHD-IV), and Child Behavior Checklist (CBCL/1.5-5), respectively. Of the seven investigated, three neurodevelopmental phenotypes met genomic quality control criteria. Linear regression was performed to determine the effect of genome-wide genetic variation on these three neurodevelopmental measures in 316 subjects.

Results

This genome-wide association study identified single nucleotide polymorphisms (SNPs) associated with three neurobehavioral phenotypes in the postoperative children ADHD-IV Impulsivity/Hyperactivity, CBCL/1.5-5 PDPs, and CBCL/1.5-5 Total Problems. The most predictive SNPs for each phenotype were: a LGALS8 intronic SNP, rs4659682, associated with ADHD-IV Impulsivity (P = 1.03×10−6); a PCSK5 intronic SNP, rs2261722, associated with CBCL/1.5-5 PDPs (P = 1.11×10−6); and an intergenic SNP, rs11617488, 50 kb from FGF9, associated with CBCL/1.5-5 Total Problems (P = 3.47×10−7). 10 SNPs (3 for ADHD-IV Impulsivity, 5 for CBCL/1.5-5 PDPs, and 2 for CBCL/1.5-5 Total Problems) had p<10−5.

Conclusions

No SNPs met genome-wide significance for our three neurobehavioral phenotypes; however, 10 SNPs reached a threshold for suggestive significance (p<10−5). Given the unique nature of this cohort, larger studies and/or replication are not possible. Studies to further investigate the mechanisms through which these newly identified genes may influence neurodevelopment dysfunction are warranted.  相似文献   

15.
Chemerin is an adipokine proposed to link obesity and chronic inflammation of adipose tissue. Genetic factors determining chemerin release from adipose tissue are yet unknown. We conducted a meta-analysis of genome-wide association studies (GWAS) for serum chemerin in three independent cohorts from Europe: Sorbs and KORA from Germany and PPP-Botnia from Finland (total N = 2,791). In addition, we measured mRNA expression of genes within the associated loci in peripheral mononuclear cells by micro-arrays, and within adipose tissue by quantitative RT-PCR and performed mRNA expression quantitative trait and expression-chemerin association studies to functionally substantiate our loci. Heritability estimate of circulating chemerin levels was 16.2% in the Sorbs cohort. Thirty single nucleotide polymorphisms (SNPs) at chromosome 7 within the retinoic acid receptor responder 2 (RARRES2)/Leucine Rich Repeat Containing (LRRC61) locus reached genome-wide significance (p<5.0×10−8) in the meta-analysis (the strongest evidence for association at rs7806429 with p = 7.8×10−14, beta = −0.067, explained variance 2.0%). All other SNPs within the cluster were in linkage disequilibrium with rs7806429 (minimum r2 = 0.43 in the Sorbs cohort). The results of the subgroup analyses of males and females were consistent with the results found in the total cohort. No significant SNP-sex interaction was observed. rs7806429 was associated with mRNA expression of RARRES2 in visceral adipose tissue in women (p<0.05 after adjusting for age and body mass index). In conclusion, the present meta-GWAS combined with mRNA expression studies highlights the role of genetic variation in the RARRES2 locus in the regulation of circulating chemerin concentrations.  相似文献   

16.
Type 1 diabetes (T1D) is an autoimmune disease resulting from the complex interaction between multiple susceptibility genes, environmental factors and the immune system. Over 40 T1D susceptibility regions have been suggested by recent genome-wide association studies; however, the specific genes and their role in the disease remain elusive. The objective of this study is to identify the susceptibility gene(s) in the 12q13 region and investigate the functional link to the disease pathogenesis. A total of 19 SNPs in the 12q13 region were analyzed by the TaqMan assay for 1,434 T1D patients and 1,865 controls. Thirteen of the SNPs are associated with T1D (best p = 4×10−11), thus providing confirmatory evidence for at least one susceptibility gene in this region. To identify candidate genes, expression of six genes in the region was analyzed by real-time RT-PCR for PBMCs from 192 T1D patients and 192 controls. SNP genotypes in the 12q13 region are the main factors that determine ERBB3 mRNA levels in PBMCs. The protective genotypes for T1D are associated with higher ERBB3 mRNA level (p<10−10). Furthermore, ERBB3 protein is expressed on the surface of CD11c+ cells (dendritic cells and monocytes) in peripheral blood after stimulation with LPS, polyI:C or CpG. Subjects with protective genotypes have significantly higher percentages of ERBB3+ monocytes and dendritic cells (p = 1.1×10−9); and the percentages of ERBB3+ cells positively correlate with the ability of APC to stimulate T cell proliferation (R2 = 0.90, p<0.0001). Our results indicate that ERBB3 plays a critical role in determining APC function and potentially T1D pathogenesis.  相似文献   

17.
None of the polymorphic variants of the IL2RA gene found associated with Type 1 Diabetes (T1D) was shown to have a functional effect. To test if the epigenetic variation could play a role at this locus, we studied the methylation of 6 CpGs located within the proximal promoter of IL2RA gene in 252 T1D patients compared with 286 age-matched controls. We found that DNA methylation at CpGs −373 and −456 was slightly but significantly higher in patients than in controls (40.4±4.6 vs 38.3±5.4, p = 1.4E4; 91.4±2.8 vs 89.5±5.3, p = 1.8E-6), while other CpG showed a strictly comparable methylation. Among 106 single nucleotide polymorphisms (SNPs) located in the neighboring 180kb region, we found that 28 SNPs were associated with DNA methylation at CpG −373. Sixteen of these SNPs were known to be associated with T1D. Our findings suggest that the effect of IL2RA risk alleles on T1D may be partially mediated through epigenetic changes.  相似文献   

18.

Background

Recent genome-wide association studies (GWAS) identified more than 70 novel loci for type 2 diabetes (T2D), some of which have been widely replicated in Asian populations. In this study, we investigated their individual and combined effects on T2D in a Chinese population.

Methodology

We selected 14 single nucleotide polymorphisms (SNPs) in T2D genes relating to beta-cell function validated in Asian populations and genotyped them in 5882 Chinese T2D patients and 2569 healthy controls. A combined genetic score (CGS) was calculated by summing up the number of risk alleles or weighted by the effect size for each SNP under an additive genetic model. We tested for associations by either logistic or linear regression analysis for T2D and quantitative traits, respectively. The contribution of the CGS for predicting T2D risk was evaluated by receiver operating characteristic (ROC) analysis and net reclassification improvement (NRI).

Results

We observed consistent and significant associations of IGF2BP2, WFS1, CDKAL1, SLC30A8, CDKN2A/B, HHEX, TCF7L2 and KCNQ1 (8.5×10−18<P<8.5×10−3), as well as nominal associations of NOTCH2, JAZF1, KCNJ11 and HNF1B (0.05<P<0.1) with T2D risk, which yielded odds ratios ranging from 1.07 to 2.09. The 8 significant SNPs exhibited joint effect on increasing T2D risk, fasting plasma glucose and use of insulin therapy as well as reducing HOMA-β, BMI, waist circumference and younger age of diagnosis of T2D. The addition of CGS marginally increased AUC (2%) but significantly improved the predictive ability on T2D risk by 11.2% and 11.3% for unweighted and weighted CGS, respectively using the NRI approach (P<0.001).

Conclusion

In a Chinese population, the use of a CGS of 8 SNPs modestly but significantly improved its discriminative ability to predict T2D above and beyond that attributed to clinical risk factors (sex, age and BMI).  相似文献   

19.

Background

IgA nephropathy (IgAN) is a complex syndrome characterized by deposition of IgA and IgA containing immune complexes (ICs) composed of IgG and complement C3 proteins in the mesangial area of glomeruli. The low-affinity receptors for the Fc region of IgG (FcγRs) are involved in autoantibody/immune complex-induced organ injury as well as ICs clearance. The aim of the study was to associate multiple polymorphisms within FCGR gene locus with IgAN in a large Chinese cohort.

Patients and Methods

60 single nucleotide polymorphisms (SNPs) spanning a 400 kb range within FCGR gene locus were analyzed in 2100 DNA samples from patients with biopsy proven IgAN and healthy age- and sex-matched controls from the same population in Chinese.

Results

Among the 60 SNPs investigated, 15 gene polymorphisms within FCGR gene locus (25%) were associated with susceptibility to IgAN. The most significantly associated SNPs within individual genes were FCGR2B rs12118043 (p = 8.74*10−3, OR 0.76, 95% CI 0.62–0.93), and FCRLB rs4657093 (p = 2.28*10−3, OR 0.77, 95% CI 0.65–0.91). Both conditional analysis and linkage disequilibrium analysis suggested they were independent signals associated with IgAN. Associations between FCGR2B rs12118043 and proteinuria (p = 3.65×10−2) as well as gross hematuria (p = 4.53×10−2), between FCRLB rs4657093 and levels of serum creatinine (p = 2.67×10−2) as well as eGFR (p = 5.41*10−3) were also observed. Electronic cis-expression quantative trait loci analysis supported their possible functional significance, with protective genotypes correlating lower gene expressions.

Conclusion

Our data from genetic associations and expression associations revealed potentially pathogenic roles of Fc receptor gene polymorphisms in IgAN.  相似文献   

20.
We report the first genome-wide association study (GWAS) whose sample size (1,053 Swedish subjects) is sufficiently powered to detect genome-wide significance (p<1.5×10−7) for polymorphisms that modestly alter therapeutic warfarin dose. The anticoagulant drug warfarin is widely prescribed for reducing the risk of stroke, thrombosis, pulmonary embolism, and coronary malfunction. However, Caucasians vary widely (20-fold) in the dose needed for therapeutic anticoagulation, and hence prescribed doses may be too low (risking serious illness) or too high (risking severe bleeding). Prior work established that ~30% of the dose variance is explained by single nucleotide polymorphisms (SNPs) in the warfarin drug target VKORC1 and another ~12% by two non-synonymous SNPs (*2, *3) in the cytochrome P450 warfarin-metabolizing gene CYP2C9. We initially tested each of 325,997 GWAS SNPs for association with warfarin dose by univariate regression and found the strongest statistical signals (p<10−78) at SNPs clustering near VKORC1 and the second lowest p-values (p<10−31) emanating from CYP2C9. No other SNPs approached genome-wide significance. To enhance detection of weaker effects, we conducted multiple regression adjusting for known influences on warfarin dose (VKORC1, CYP2C9, age, gender) and identified a single SNP (rs2108622) with genome-wide significance (p=8.3×10−10) that alters protein coding of the CYP4F2 gene. We confirmed this result in 588 additional Swedish patients (p<0.0029) and, during our investigation, a second group provided independent confirmation from a scan of warfarin-metabolizing genes. We also thoroughly investigated copy number variations, haplotypes, and imputed SNPs, but found no additional highly significant warfarin associations. We present power analysis of our GWAS that is generalizable to other studies, and conclude we had 80% power to detect genome-wide significance for common causative variants or markers explaining at least 1.5% of dose variance. These GWAS results provide further impetus for conducting large-scale trials assessing patient benefit from genotype-based forecasting of warfarin dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号