共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Regulatory T cells (Tregs) play a pivotal role in the maintenance of tolerance as well as in the control of immune activation, particularly during chronic infections. In the setting of HIV infection, the majority of studies have reported an increase in Treg frequency but a decrease in absolute number in all immune compartments of HIV-infected individuals. Several nonexclusive mechanisms have been postulated to explain this preferential Treg accumulation, including peripheral survival, increased proliferation, increased peripheral conversion, and tissue redistribution. The role played by Tregs during HIV infection is still poorly understood, as two opposing hypotheses have been proposed. A detrimental role of Tregs during HIV infection was suggested based on the evidence that Tregs suppress virus-specific immune responses. Conversely, Tregs could be beneficial by limiting immune activation, thus controlling the availability of HIV targets as well as preventing immune-based pathologies. Despite the technical difficulties, getting a better understanding of the mechanisms regulating Treg dynamics remains important, as it will help determine whether we can successfully manipulate Treg function or number to the advantage of the infected host. The aim of this review is thus to discuss the recent findings on Treg homeostasis and function in the setting of HIV infection. 相似文献
3.
Regulatory T cells (Tregs) suppress immune activation and are critical in preventing autoimmune diseases. While the ability of Tregs to inhibit proliferation of other T cells is well established, it is not yet clear whether Tregs also modulate inflammatory cytokines during an immune response. Here, we show that the expression of inflammatory cytokine receptors IL-1R1 and TNFR2 were higher on resting mature Tregs compared to naïve or memory T cells. While upon activation through the T cell receptor (TCR), expression of IL-1R1 and TNFR2 were upregulated on all T cell subsets, IL-1R1 maintained significantly higher expression on activated Tregs as compared to other T cell subsets. The decoy receptor for IL-1 (IL-1R2) was not expressed by any of the resting T cells but was rapidly upregulated and preferentially expressed upon TCR-stimulation on Tregs. In addition, we found that Tregs also expressed high levels of mRNA for IL-1 antagonist, IL-1RA. TCR-stimulation of naïve T cells in the presence of TGFβ, which induces FOXP3 expression, however did not result in upregulation of IL-1R1 or IL-1R2. In addition, ectopic expression of FOXP3 in non-Tregs, while causing significant upregulation of IL-1R1 and IL-1R2, did not achieve the levels seen in bona fide Tregs. We also determined that resting human Tregs expressing IL-1R1 did not have higher suppressive capacity compared to IL-1R1- Tregs, suggesting that IL-1R1 does not discriminate suppressive resting Tregs in healthy individuals. Functionally, activated human Tregs displayed a capacity to neutralize IL-1β, which suggests a physiological significance for the expression of IL-1 decoy receptor on Tregs. In conclusion, our findings that human Tregs preferentially express receptors for TNF and IL-1 suggest a potential function in sensing and dampening local inflammation. 相似文献
4.
自身免疫性疾病是由于机体正常免疫耐受功能受损导致免疫系统对自身组织结构和功能的破坏,并出现一定临床表现的一类疾病.调节性T细胞作为一类具有负向免疫调节功能的淋巴细胞亚群在免疫自稳和免疫耐受中起关键作用,既能抑制不恰当的免疫反应,又能限制免疫应答的范围、程度及作用时间,对效应性T细胞的增殖及免疫活性的发挥产生抑制,因此在许多自身免疫性疾病的发病中扮演重要角色.近年来的研究表明调节性T细胞可以通过细胞接触、分泌细胞因子、基因调控等多种途径发挥作用,在不同的疾病,不同的内环境因素作用下可以表现出不同的特点,转录因子Foxp3作为调节性T细胞的特异性标志是其分化成熟及功能维持的根本. 相似文献
5.
Gerd Meyer zu H?rste Steffen Cordes Anne K. Mausberg Alla L. Zozulya Carsten Wessig Tim Sparwasser Christian Mathys Heinz Wiendl Hans-Peter Hartung Bernd C. Kieseier 《PloS one》2014,9(10)
Inflammatory neuropathies represent disabling human autoimmune disorders with considerable disease variability. Animal models provide insights into defined aspects of their disease pathogenesis. Forkhead box P3 (FoxP3)+ regulatory T lymphocytes (Treg) are anti-inflammatory cells that maintain immune tolerance and counteract tissue damage in a variety of immune-mediated disorders. Dysfunction or a reduced frequency of Tregs have been associated with different human autoimmune disorders. We here analyzed the functional relevance of Tregs in determining disease manifestation and severity in murine models of autoimmune neuropathies. We took advantage of the DEREG mouse system allowing depletion of Treg with high specificity as well as anti-CD25 directed antibodies to deplete Tregs in mice in actively induced experimental autoimmune neuritis (EAN). Furthermore antibody-depletion was performed in an adoptive transfer model of chronic neuritis. Early Treg depletion increased clinical EAN severity both in active and adoptive transfer chronic neuritis. This was accompanied by increased proliferation of myelin specific T cells and histological signs of peripheral nerve inflammation. Late stage Treg depletion after initial disease manifestation however did not exacerbate inflammatory neuropathy symptoms further. We conclude that Tregs determine disease severity in experimental autoimmune neuropathies during the initial priming phase, but have no major disease modifying function after disease manifestation. Potential future therapeutic approaches targeting Tregs should thus be performed early in inflammatory neuropathies. 相似文献
6.
7.
Yvonne Vercoulen Ellen J. Wehrens Nienke H. van Teijlingen Wilco de Jager Jeffrey M. Beekman Berent J. Prakken 《PloS one》2009,4(9)
Background
CD4+CD25+FOXP3+ Regulatory T cells (Treg) play a central role in the immune balance to prevent autoimmune disease. One outstanding question is how Tregs suppress effector immune responses in human. Experiments in mice demonstrated that Treg restrict effector T cell (Teff) responses by deprivation of the growth factor IL-2 through Treg consumption, resulting in apoptosis of Teff.Principal Findings
In this study we investigated the relevance of Teff apoptosis induction to human Treg function. To this end, we studied naturally occurring Treg (nTreg) from peripheral blood of healthy donors, and, to investigate Treg function in inflammation in vivo, Treg from synovial fluid of Juvenile Idiopathic Arthritis (JIA) patients (SF-Treg). Both nTreg and SF-Treg suppress Teff proliferation and cytokine production efficiently as predicted. However, in contrast with murine Treg, neither nTreg nor SF-Treg induce apoptosis in Teff. Furthermore, exogenously supplied IL-2 and IL-7 reverse suppression, but do not influence apoptosis of Teff.Significance
Our functional data here support that Treg are excellent clinical targets to counteract autoimmune diseases. For optimal functional outcome in human clinical trials, future work should focus on the ability of Treg to suppress proliferation and cytokine production of Teff, rather than induction of Teff apoptosis. 相似文献8.
Background
FOXP3+ regulatory T cells (Tregs) are critical for preventing intestinal inflammation. However, FOXP3+ T cells are paradoxically increased in the intestines of patients with the inflammatory bowel disease (IBD) ulcerative colitis (UC) or Crohn’s disease (CD). We determined whether these FOXP3+ cells in IBD patients share or lack the phenotype of such cells from patients without IBD.Methods
We quantified and characterized FOXP3+ Treg populations, as well as FOXP3- CD4+ T cells, in the lamina propria lymphocytes (LPL) of intestine surgically resected from patients with and without IBD, and in the blood of controls or Crohn’s patients with or without disease activity.Results
In all samples, a similar fraction of FOXP3+ cells expressed the “natural” Treg (nTreg) marker Helios, suggesting that, in IBD, these cells are not entirely “induced” Tregs (iTregs) derived from activated effector T cells. Helios+ and Helios- FOXP3+ T cells demonstrated similar expression of maturation markers, activation markers, and inhibitory molecules between IBD patients and controls, while FOXP3- cells paradoxically expressed more of the inhibitory receptors CD39, CTLA4, and PD-1 in inflamed mucosa. Greater expression of activation markers was also seen in both Helios+ and Helios- Tregs, relative to FOXP3- cells, in both IBD patients and controls, indicating that Tregs are effectively activated by antigen in IBD.Conclusions
Extensive immunophenotyping revealed that Helios+ and Helios- mucosal Tregs exist at a similar frequency, and have a similar expression of inhibitory molecules and activation markers in patients with IBD as in healthy controls. 相似文献9.
Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide sequence conservation of mammalian granulin modules identified potential structure-activity relationships that may be informative in designing progranulin based therapeutics. 相似文献
10.
Syed Bilal Ahmad Andrabi Subhash Kumar Tripathi Obaiah Dirasantha Kartiek Kanduri Sini Rautio Catharina C. Gross Sari Lehtimäki Kanchan Bala Johanna Tuomisto Urvashi Bhatia Deepankar Chakroborty Laura L. Elo Harri Lähdesmäki Heinz Wiendl Omid Rasool Riitta Lahesmaa 《Cell reports》2018,22(8):2094-2106
11.
It is widely accepted that the primary immune system contains a subpopulation of cells, known as regulatory T cells whose function is to regulate the immune response. There is conflicting biological evidence regarding the ability of regulatory cells to lose their regulatory capabilities and turn into immune promoting cells. In this paper, we develop mathematical models to investigate the effects of regulatory T cell switching on the immune response. Depending on environmental conditions, regulatory T cells may transition, becoming effector T cells that are immunostimulatory rather than immunoregulatory. We consider this mechanism both in the context of a simple, ordinary differential equation (ODE) model and in the context of a more biologically detailed, delay differential equation (DDE) model of the primary immune response. It is shown that models that incorporate such a mechanism express the usual characteristics of an immune response (expansion, contraction, and memory phases), while being more robust with respect to T cell precursor frequencies. We characterize the affects of regulatory T cell switching on the peak magnitude of the immune response and identify a biologically testable range for the switching parameter. We conclude that regulatory T cell switching may play a key role in controlling immune contraction. 相似文献
12.
Having been long debated, the notion of suppressor T cells--renamed regulatory T cells--is back on the map, but many questions remain regarding the nature of these regulatory cells. Are they specialized cells? What are their phenotype, antigen specificity, mode of action and, above all, biological (and immunopathological) relevance? The predominant role of naturally occurring CD4+CD25+ T cells has been emphasized recently. Other cell types, however, contribute to immunoregulation also, whether they arise spontaneously during ontogeny or during the course of an adaptive immune response. 相似文献
13.
Shudan Shen Mariana I. Chuck Minghua Zhu Deirdre M. Fuller Chih-wen Ou Yang Weiguo Zhang 《The Journal of biological chemistry》2010,285(46):35393-35405
LAT (linker for activation of T cells) is a transmembrane adaptor protein that plays an essential role in TCR-mediated signaling and thymocyte development. Because LAT-deficient mice have an early block in thymocyte development, we utilized an inducible system to delete LAT in primary T cells to study LAT function in T cell activation, homeostasis, and survival. Deletion of LAT caused primary T cells to become unresponsive to stimulation from the TCR and impaired T cell homeostatic proliferation and long term survival. Furthermore, deletion of LAT led to reduced expression of Foxp3, CTLA-4, and CD25 in Treg cells and impaired their function. Consequently, mice with LAT deleted developed a lymphoproliferative syndrome similar to that in LATY136F mice, although less severe. Our data implicate that LAT has positive and negative roles in the regulation of mature T cells. 相似文献
14.
Jan P. Böttcher Oliver Schanz Dirk Wohlleber Zeinab Abdullah Svenja Debey-Pascher Andrea Staratschek-Jox Bastian Höchst Silke Hegenbarth Jessica Grell Andreas Limmer Imke Atreya Markus F. Neurath Dirk H. Busch Edgar Schmitt Peter van Endert Waldemar Kolanus Christian Kurts Joachim L. Schultze Percy A. Knolle 《Cell reports》2013,3(3):779-795
- Download : Download full-size image
15.
Martine Aubert Miri Yoon Derek D. Sloan Patricia G. Spear Keith R. Jerome 《Journal of virology》2009,83(12):6171-6183
The virological synapse (VS) is a specialized molecular structure that facilitates the transfer of certain lymphotropic viruses into uninfected T cells. However, the role of the VS in the transfer of nonlymphotropic viruses into T cells is unknown. Herpes simplex virus (HSV) has been shown in vitro to infect T cells and modulate T-cell receptor function, thereby suppressing T-cell antiviral function. However, whether such infection of T cells occurs in vivo is unknown. Here, we examined whether T-cell infection could be observed in human HSV disease and investigated the mechanism of HSV entry into T cells. We found that HSV-infected T cells were readily detectable during human disease, suggesting that infection and modulation of T-cell function plays a role in human immunopathology. HSV infection of both CD4+ and CD8+ T cells occurred much more efficiently via direct cell-to-cell spread from infected fibroblasts than by cell-free virus. Activation of T cells increased their permissivity to HSV infection. Cell-to-cell spread to T cells did not require HSV glycoproteins E and I (gE and gI), which are critical for cell-to-cell spread between epithelial cells. Transfer of HSV to T cells required gD, and the four known entry receptors appear to be contributing to viral entry, with a dominant role for the herpesvirus entry mediator and nectin-1. VS-like structures enriched in activated lymphocyte function-associated antigen 1 (LFA-1) were observed at the point of contact between HSV-infected fibroblasts and T cells. Consistent with spread occurring via the VS, transfer of HSV was increased by activation of LFA-1, and cell-to-cell spread could be inhibited by antibodies to LFA-1 or gD. Taken together, these results constitute the first demonstration of VS-dependent cell-to-cell spread for a predominantly nonlymphotropic virus. Furthermore, they support an important role for infection and immunomodulation of T cells in clinical human disease. Targeting of the VS might allow selective immunopotentiation during infections with HSV or other nonlymphotropic viruses.The virological synapse (VS) is a specialized molecular structure that facilitates the transfer of certain lymphotropic viruses, such as human immunodeficiency virus (HIV) and human T-cell leukemia virus type 1 (HTLV-1), into uninfected T cells (22, 28, 38). Entry and infection of T cells by HIV or HTLV-1 via the VS is far more efficient than infection by cell-free virus, and thus this structure plays a critical role in the pathogenesis of these viruses. The organization of the VS is in many respects similar to the immunological synapse (IS), in particular, to the immature IS. The VS is highly enriched in the adhesion molecule lymphocyte function-associated antigen 1 (LFA-1) and its ligands intercellular adhesion molecule 1 (ICAM-1) and ICAM-3 (29); however, it does not possess the CD3-enriched central region associated with the mature IS (28, 47). While the VS is critical to the pathogenesis of HIV and HTLV-1, it remains an unanswered question whether the VS is also involved in T-cell infection by other viruses, especially those not typically considered lymphotropic.Herpes simplex virus (HSV) is a remarkably successful human pathogen that establishes lifelong latency in neurons of the dorsal root ganglia. HSV can efficiently reactivate from the latent state and transmit to new hosts despite the presence of preformed immunity. HSV is thought to achieve this feat by employing a number of sophisticated immune evasion mechanisms (33), many of which are directed at the cellular arm of the immune response. In one such potential mechanism, HSV has evolved the ability to enter and infect T cells. Although T cells do not support efficient viral replication (25), infection by HSV profoundly modulates T-cell receptor (TCR) signaling, which prevents T-cell cytotoxic function (55) and alters cytokine production profiles toward an interleukin-10-dominated immunosuppressive phenotype (54). However, it is unknown whether and to what extent HSV infection of T cells occurs during human HSV disease. Furthermore, the dominant mechanisms by which HSV might gain access to lesion-infiltrating T cells have not been elucidated.Here, we evaluated T-cell infection during human HSV infections, the mechanisms by which HSV enters T cells, the relative involvement of cell-cell spread versus cell-free virus in T-cell infection, and the role of the VS in the infection of T cells by HSV. The demonstration of infection of T cells in human HSV disease and of a dominant role for the VS in entry of HSV into T cells suggests that the VS is important in the pathogenesis of nonlymphotropic as well as lymphotropic viruses. Thus, the VS may be a unique pharmacologic target to allow improved immune control of a wide variety of viral infections. 相似文献
16.
A fundamental role of the mammalian immune system is to eradicate pathogens while minimizing immunopathology. Instigating and maintaining immunological tolerance within the intestine represents a unique challenge to the mucosal immune system. Regulatory T cells are critical for continued immune tolerance in the intestine through active control of innate and adaptive immune responses. Dynamic adaptation of regulatory T-cell populations to the intestinal tissue microenvironment is key in this process. Here, we discuss specialization of regulatory T-cell responses in the intestine, and how a breakdown in these processes can lead to chronic intestinal inflammation.The mammalian host harbors a vast and diverse commensal microbiota. The gastrointestinal tract is a site of preferential colonization by commensal organisms, consisting of fungal, viral, and bacterial species. Initial microbial colonization of the host occurs during birth and continues until a stable commensal microbiota is established during childhood (Tannock 2007). Colonization of the gastrointestinal tract is a vital triggering stimuli for maturation of the mucosal immune system, and the presence of a commensal microbiota further benefits the host by providing resistance to invading pathogens and metabolism of dietary components (Macpherson et al. 2005; Hooper et al. 2012). A dynamic molecular dialogue between microbiota and host ensures this colonization occurs as a state of mutualism, the breakdown of which can result in chronic pathologies of the gastrointestinal tract, such as inflammatory bowel diseases (IBD) (Kaser et al. 2010; Maloy and Powrie 2011). Complex interactions between the microbiota, mucosal immune system, and the intestinal tissue cells provide multiple layers of regulation that control intestinal immunity. Here, we focus on the role of regulatory T cells as key components of intestinal homeostasis and discuss how tissue-specific adaptations contribute to their function when patrolling this challenging frontier. 相似文献
17.
18.
Mycobacterium bovis bacillus Calmette-Guérin (M. bovis BCG), the only currently available vaccine against tuberculosis, has been reported to induce regulatory T cells in humans. The activity of regulatory T cells may not only dampen immunogenicity and protective efficacy of tuberculosis-vaccines, but also hamper diagnosis of infection of tuberculosis, when using immune (e.g. IFNγ-release) assays. Still, in settings of infectious diseases and vaccination, most studies have focused on CD4+ regulatory T cells, and not CD8+ regulatory T-cells. Here, we present a comparative analysis of the suppressive phenotype and function of CD4+ versus CD8+ T cells after in vitro live BCG activation of human cells. Moreover, as BCG is administered as a (partly) live vaccine, we also compared the ability of live versus heatkilled BCG in activating CD4+ and CD8+ regulatory T cell responses. BCG-activated CD8+ T cells consistently expressed higher levels of regulatory T cell markers, and after live BCG activation, density and (co-)expression of markers were significantly higher, compared to CD4+ T cells. Furthermore, selection on CD25-expression after live BCG activation enriched for CD8+ T cells, and selection on co-expression of markers further increased CD8+ enrichment. Ultimately, only T cells activated by live BCG were functionally suppressive and this suppressive activity resided predominantly in the CD8+ T cell compartment. These data highlight the important contribution of live BCG-activated CD8+ Treg cells to immune regulation and emphasize their possible negative impact on immunity and protection against tuberculosis, following BCG vaccination. 相似文献
19.
20.
JP Tsai MH Lee SC Hsu MY Chen SJ Liu JT Chang CT Liao AJ Cheng P Chong CL Chu CR Shen HW Chen 《Journal of immunology (Baltimore, Md. : 1950)》2012,189(4):1671-1679
Previous studies have shown that TGF-β acts cooperatively with IL-6 to elicit a high frequency of IL-17-secreting CD4(+) T cells (termed Th17) and an elevated CD8(+)IL-17(+) T cell population (termed Tc17). These CD8(+) cells fail to behave like most cytotoxic T lymphocytes that express IFN-γ and granzyme B, but they exhibit a noncytotoxic phenotype. Although a significant increase in the number of these Tc17 cells was found in tumors, their role and interaction with other cell types remain unclear. In this study, we demonstrate that the presence of CD4(+)CD25(-) T cells, but not the CD4(+)CD25(+) (regulatory T [Treg]) cell population, significantly reduced the elicitation of Tc17 cells, possibly as a result of the induction of apoptotic signals. Importantly, these signals may be derived from soluble mediators, and the addition of anti-IL-2 restored the reduction of Tc17 cells in the presence of CD4(+)CD25(-) T cells. Finally, the elicited Tc17 and Treg cells exhibited a close association in patients with head and neck cancer, indicating that the surrounding Treg cells might maintain the survival of the Tc17 cells. Taken together, these results reveal an intriguing mechanism in which Tc17 cells are controlled by a finely tuned collaboration between the different types of CD4(+) T cells in distinct tumor microenvironments. 相似文献