首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responsive ARC-Lum probes were used for measurement of the concentration of active protein kinases (PKs) and determination of affinity of inhibitors of PKs. ARC-Lum probes incorporate thiophene or a selenophene heterocycle and a fluorophore conjugated to the lysine residue in the peptide fragment. In the complex with a PK, ARC-Lum probes emit long-lifetime (microsecond-scale) luminescence at the emission wavelengths of the fluorescent label if the complex is illuminated at the excitation wavelength of the thiophene- or selenophene-containing phosphorescence donors. Bisubstrate ARC-Lum probes bind with sub-nanomolar affinity with several PKs of the AGC group. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   

2.
The CD8αβ heterodimer interacts with class I pMHC on antigen-presenting cells as a co-receptor for TCR-mediated activation of cytotoxic T cells. To characterize this immunologically important interaction, we used monoclonal antibodies (mAbs) specific to either CD8α or CD8β to probe the mechanism of CD8αβ binding to pMHCI. The YTS156.7 mAb inhibits this interaction and blocks T cell activation. To elucidate the molecular basis for this inhibition, the crystal structure of the CD8αβ immunoglobulin-like ectodomains were determined in complex with mAb YTS156.7 Fab at 2.7 Å resolution. The YTS156.7 epitope on CD8β was identified and implies that residues in the CDR1 and CDR2-equivalent loops of CD8β are occluded upon binding to class I pMHC. To further characterize the pMHCI/CD8αβ interaction, binding of class I tetramers to CD8αβ on the surface of T cells was assessed in the presence of anti-CD8 mAbs. In contrast to YTS156.7, mAb YTS105.18, which is specific for CD8α, does not inhibit binding of CD8αβ to class I tetramers, indicating the YTS105.18 epitope is not occluded in the pMHCI/CD8αβ complex. Together, these data indicate a model for the pMHCI/CD8αβ interaction similar to that observed for CD8αα in the CD8αα/pMHCI complex, but in which CD8α occupies the lower orientation (membrane proximal to the antigen presenting cell), and CD8β occupies the upper position (membrane distal). The implication of this molecular assembly for the function of CD8αβ in T cell activation is discussed.  相似文献   

3.
Although RII protein kinase A (PKA) regulatory subunits are constitutively localized to discrete cellular compartments through binding to A-kinase-anchoring proteins (AKAPs), RI subunits are primarily diffuse in the cytoplasm. In this paper, we report a novel AKAP-dependent localization of RIα to distinct organelles, specifically, multivesicular bodies (MVBs). This localization depends on binding to AKAP11, which binds tightly to free RIα or RIα in complex with catalytic subunit (holoenzyme). However, recruitment to MVBs occurs only with the release of PKA catalytic subunit (PKAc). This recruitment is reversed by reassociation with PKAc, and it is disrupted by the presence of AKAP peptides, mutations in the RIα AKAP-binding site, or knockdown of AKAP11. Cyclic adenosine monophosphate binding not only unleashes active PKAc but also leads to the targeting of AKAP11:RIα to MVBs. Therefore, we show that the RIα holoenzyme is part of a signaling complex with AKAP11, in which AKAP11 may direct RIα functionality after disassociation from PKAc. This model defines a new paradigm for PKA signaling.  相似文献   

4.
Protein kinase C related kinase 1 (PRK1) is a component of Rho-GTPase, androgen receptor, histone demethylase and histone deacetylase signaling pathways implicated in prostate and ovarian cancer. Herein we describe the crystal structure of PRK1 in apo form, and also in complex with a panel of literature inhibitors including the clinical candidates lestaurtinib and tofacitinib, as well as the staurosporine analog Ro-31-8220. PRK1 is a member of the AGC-kinase class, and as such exhibits the characteristic regulatory sequence at the C-terminus of the catalytic domain – the ‘C-tail’. The C-tail fully encircles the catalytic domain placing a phenylalanine in the ATP-binding site. Our inhibitor structures include examples of molecules which both interact with, and displace the C-tail from the active site. This information may assist in the design of inhibitors targeting both PRK and other members of the AGC kinase family.  相似文献   

5.
A hybridoma cell line producing mouse monoclonal antibody against pig kidney Na,K-ATPase was established. The antibody, named 38 (mAb38, IgG1), was purified from mouse ascites fluid by chromatography on a protein A-Sepharose column. Antigens immobilized on microplate wells with p-benzoquinone were used for titer assays. mAb38 cross-reacted with both dodecyloctaethyleneglycol monoether (C12E8)-solubilized enzyme and membranous sodium dodecyl sulfate (SDS)-treated enzyme from kidney with high affinity (50% binding = 0.6 nM). However, the antibody bound to neither alpha- nor beta-subunit separated by preparative SDS-polyacrylamide gel electrophoresis (PAGE). The stoichiometry of antibody binding to the purified enzyme was estimated to be about 0.86 mol of IgG per mol of alpha beta-protomer. Na,K-ATPase proteins were recovered from a column of mAb38-coupled Affi-Gel by elution with pH 3 buffer when C12E8-solubilized kidney enzyme or detergent extracts of brain microsomes were applied to it, confirming that the mAb is directed to Na,K-ATPase. mAb38 at saturation level concentrations had no effect on kidney Na,K-ATPase activity or on ouabain-sensitive Rb uptake in erythrocytes. In an immunofluorescence study, the antibody bound to intact erythrocytes much more strongly than control IgG1 (mAb50c), but the extent of the antibody binding to inside-out vesicles under hypotonic conditions was lower than that of the control. Most of the antibody binding activity remained when the kidney enzyme was treated with sialidase. These results suggest that this mAb38 was raised against an intact conformation of a cell-surface-exposed site of Na,K-ATPase.  相似文献   

6.
Antibody directed to the O-specific polysaccharide (Ps) side chain of Pseudomonas aeruginosa LPS provides immunotype-specific protection against infection by virtue of enhancing opsonophagocytosis. We have developed a syngeneic anti-idiotypic antibody (mAb2) directed to a functionally active monoclonal immunotype 1 Ps-antibody (mAb1). The mAb2 performed as a molecular mimic of Ps as evidenced by 1) blocking of mAb1/mAb2 interaction by Ps, 2) blocking of mAb1/Ps binding by mAb2, 3) cross-species binding of mAb2 to human Ps antibodies from individuals immunized with the same immunotype 1 Ps, and 4) induction of anti-LPS antibody by immunization with mAb2 in syngeneic mice. Our studies thus show that an anti-idiotypic antibody may functionally mimic the O-polysaccharide of P. aeruginosa LPS, and bind to cross-reactive Id present in human Ps antibodies. We have further shown that this anti-idiotypic antibody induces anti-LPS antibody when used as an Ag in syngeneic mice, suggesting that this approach may eventually be used to successfully immunize humans.  相似文献   

7.
Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1‐3) and one regulatory (PKAr) subunits to integrate cAMP‐dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down‐regulation of PKAc1 or stabilisation of a dominant‐negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP‐phosphodiesterase. Concordantly, inhibition of the cGMP‐dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP‐phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.  相似文献   

8.
Single-chain fragment variable (scFv) antibodies are antibody fragments consist of variable domains of full antibodies known to retain antigen binding properties while having much lower molecular weights granting some beneficial properties to them. In our previous study, three phage particles each displaying an individual scFv antibody (i.e. J43, J44, and J48) were identified as tumor necrosis factor alpha (TNF-α) binders. The current study aimed to produce previously identified anti-TNF-α scFv antibodies and to investigate their abilities to bind and inhibit TNF-α biological effect. The estimated free energy of folding determined using spectrofluorimetry method for the prepared scFv proteins was in the range of 6.35–12.45?kJ?mol?1 indicating their proper folding in the solution. In ELISA experiment, the produced scFvs showed an appropriate affinity towards TNF-α with Kd values in the range of 0.5–2.18?µM. They also inhibited the TNF-α-induced cytotoxicity on L929 cells with sub-micromolar IC50 values (0.12 and 0.73?μM for J44 and J48, respectively). Molecular docking studies showed that J44 could mimic adalimumab interactions with TNF-α, confirming its relatively high TNF-α inhibitory effect compared to J43 and J48. It seems that the findings in the current study can be useful for designing more potent anti-TNF-α antibodies.  相似文献   

9.
Mice can be efficiently immunized in the absence of adjuvant using chemically cross-linked bispecific antibody (biAb) that bind to both class II MHC molecules and a protein Ag of interest. In our experiments, mice were immunized with the protein Ag hen egg lysozyme (HEL) bound to several different biAb, each of which contained a different mAb specific for a distinct (nonoverlapping) epitope of HEL. Primary and secondary serum antibody responses of the immunized mice were analyzed for their specificity for different epitopes of HEL. The results show that immunization with each HEL-biAb complex produced a bias in the epitope specificity of the primary antibody response. This bias was determined by the individual specificity of the anti-HEL mAb used in each biAb. The primary response was dominated by antibody reacting with epitopes distinct from that bound by the mAb in the immunizing complex, and was deficient in antibody that recognized the epitope bound by the biAb during immunization. This bias in antibody specificity was maintained during the secondary antibody response that followed a single challenge with soluble HEL alone. However, an additional challenge with HEL induced a switch in the specificity pattern, with increased amounts of antibody against the epitope that was previously ignored. In addition, immunization with Ag bound to biAb resulted in a substantial primary anti-Id response, detected by serum antibody specific only for the Fab'2 fragment of the mAb used in the biAb. These studies illustrate two unique features of immunization using biAb that allow for fine manipulation of the epitope specificity and anti-Id repertoires of the antibody response to whole protein Ag.  相似文献   

10.
A general approach for anti-hapten antibody purification utilizing double-modified albumins is presented. Purification is based on simultaneous modification of an albumin with a hapten (e.g. fluorescein) and desthiobiotin. Three distinct albumins (BSA, HSA and ovalbumin) were modified accordingly and evaluated for their ability to purify the anti-fluorescein mAb from a mixture of commercial preparation and an E. coli cell lysate. The recovered mAb was obtained at relatively high purity (88–95%), in a wide range of target concentrations (0.66–0.02 mg/ml) within a total purification time of ∼ 20 min. Substantial increase in the contamination background did not affect purity.  相似文献   

11.
Human prostate-specific antigen (PSA or KLK3) is an important marker for the diagnosis and management of prostate cancer. This is an androgen-regulated glycoprotein of the kallikrein-related protease family secreted by prostatic epithelial cells. Its physiological function is to cleave semenogelins in the seminal coagulum and its enzymatic activity is strongly modulated by zinc ions.Here we present the first crystal structure of human PSA in complex with monoclonal antibody (mAb) 8G8F5 that enhances its enzymatic activity. The mAb recognizes an epitope composed of five discontinuous segments including residues from the kallikrein loop and stabilizes PSA in an “open and active conformation” that accelerates catalysis.We also present the crystal structure of PSA in complex with both the mAb 8G8F5 and a fluorogenic substrate Mu-KGISSQY-AFC, derived from semenogelin I. By exploiting the inhibition of PSA by zinc ions, we were able to obtain a substrate acyl intermediate covalently linked to the catalytic serine, at pH 7.3 but not at pH 5.5.Moreover, the inhibition of PSA activity by zinc was found to be modulated by pH variations but not by the antibody binding. The correlation of the different data with the physiological conditions under which PSA can cleave semenogelins is discussed.  相似文献   

12.
Immunoprecipitation combined with mass spectrometry (MS) is a promising technique for targeting proteomics in characterizing submicrograms of target protein and interacting proteins in living cells. This method, however, is limited by interference arising from nonspecific binding. We report a novel gold nanoparticle (AuNP)-based immuno probe approach for immunoprecipitation. By cross-linking the antibody Fc domain to protein G covalently modified on AuNPs, the probe was fabricated and characterized to have 60 protein G and 30 immunoglobins per AuNP. We used human immunoglobin against the target and mouse immunoglobin with the same isotype (IgG) to fabricate the target and preclear probe, respectively, and termed it as the dual probe approach. Our results showed that the preclear probe (AuNP-IgG) and the target probe (AuNP-anti-ERα) share a similar panel of nonspecific binders but dramatic different specificity toward the target. Thus, using the dual probe method, we showed major nonspecific binders in the cell lysate could be largely removed without sacrificing the target protein. Compared to the conventional agarose gel-chromatography, the AuNP-based probe exhibited less nonspecific interference and higher recovery yield for ERα. Moreover, the AuNP-based probe is more inert than the agarose gel under harsh conditions and does not induce dissociation of the cross-linked IgG that could interfere with target identification. Using AuNP-based dual probes, ERα was shown to be purified from MCF-7 cells with minimum nonspecific binding. Moreover, the identity and phosphorylation sites on the C-terminus of the purified ERα could be positively confirmed by MS using only 1 mg of cellular protein.  相似文献   

13.
Signaling events triggered by interferon alpha (IFN-α) and ribavirin are involved in anti-hepatitis C virus (HCV) action. The p38 mitogen-activated protein kinase (MAPK) pathway plays an important role in HCV pathogenesis. Effects of IFN-α and ribavirin on p38 MAPK signaling were investigated in human hepatoma cells. Type I IFN receptor 2 (IFNAR2) mediated IFN-α-induced p38 MAPK phosphorylation. Also, p38 MAPK phosphorylation was enhanced by ribavirin. Treatment for 48 h with a combination of IFN-α and ribavirin increased p38 MAPK phosphorylation, whereas the treatment for 72 h reduced p38 MAPK phosphorylation. Cell culture-derived HCV (HCVcc) infection dramatically increased p38 MAPK phosphorylation and such phosphorylation was inhibited by IFN-α or ribavirin. Moreover, siRNA-mediated knockdown of p38 MAPK resulted in enhancement of ribavirin-dependent HCV RNA replication. These results suggest that regulation of p38 MAPK signaling by IFN-α and ribavirin might contribute to anti-HCV action.  相似文献   

14.
Liu Y  Chang J  Chen Y  Wan B  Wang Y  Zhang G 《Biotechnology letters》2012,34(7):1203-1208
A non-immunized human single chain variable fragment (scFv) library containing 2.5 × 10(7) individual clones was constructed from antibody variable region genes of 200 non-immunized donors. ScFv gene repertories were generated by randomly combining rearranged variable regions of heavy chain (VH) and natural occurring light chain (VL) using overlapping extension PCR (OE-PCR). Five recombinant protein antigens from different species were successfully used to select specific binders. Phage ELISA showed that the recombinant phage particle could specifically bind to non-structural protein 1 of Avian influenza virus. This method can therefore efficiently generate a phage antibody library.  相似文献   

15.
16.
Polycystin signaling is likely to be regulated by phosphorylation. While a number of potential protein kinases and their target phosphorylation sites on polycystin-1 have been identified, the corresponding phosphatases have not been extensively studied. We have now determined that polycystin-1 is a regulatory subunit for protein phosphatase-1α (PP1α). Sequence analysis has revealed the presence of a highly conserved PP1-interaction motif in the cytosolic, C-terminal tail of polycystin-1; and we have shown that transfected PP1α specifically co-immunoprecipitates with a polycystin-1 C-tail construct. To determine whether PP1α dephosphorylates polycystin-1, a PKA-phosphorylated GST-polycystin-1 fusion protein was shown to be dephosphorylated by PP1α but not by PP2B (calcineurin). Mutations within the PP1-binding motif of polycystin-1, including an autosomal dominant polycystic kidney disease (ADPKD)-associated mutation, significantly reduced PP1α-mediated dephosphorylation of polycystin-1. The results suggest that polycystin-1 forms a holoenzyme complex with PP1α via a conserved PP1-binding motif within the polycystin-1 C-tail, and that PKA-phosphorylated polycystin-1 serves as a substrate for the holoenzyme.  相似文献   

17.
A monoclonal antibody (mAb) with framework reactivity against the T cell receptor (TCR) alpha beta complex is characterized. The mAb, beta Framework 1 (beta F1) is capable of immunoprecipitating the TCR alpha beta complex from 125I-labeled human T cell tumors, immunocompetent T cell clones, and peripheral blood lymphocytes (PBL). beta F1 recognizes the separated TCR beta subunit in Western blotting. Because it does not bind to the surface of viable T cells but does react with the plasma membrane form of the TCR after treatment with membrane solubilizing agents, the beta F1 mAb reacts with a "hidden" determinant on the TCR beta subunit. After solubilization with 70% ethanol, the TCR alpha beta complex is shown to exist on greater than 92% of T3+ human PBL, whereas 2 to 8% of T3+ PBL do not react with the mAb. The beta F1 mAb demonstrates the existence of differently glycosylated surface 125I-labeled TCR alpha-chains (alpha, alpha', alpha") in association with a common TCR beta-chain on the HPB-MLT T cell leukemia. Reactivity of the beta F1 mAb on thymus tissue sections is similar to that of anti-Leu-4 (anti-T3). The beta F1 mAb should prove useful as a research tool for both the immunochemical characterization and isolation of virtually any alpha beta T cell receptor, whether from individual T cell clones or polyclonal populations of T lymphocytes. Recognition of T cell receptors in histologic tissue sections suggests that the beta F1 mAb may be useful in the clinical diagnosis of T cell lineage neoplasms. In failing to recognize all T3+ lymphocytes, it allows the identification of novel populations of T3+ lymphocytes that may express non-alpha, non-beta T cell receptors.  相似文献   

18.
In the biopharmaceutical industry, a clonally derived cell line is typically used to generate material for investigational new drug (IND)‐enabling toxicology studies. The same cell line is then used to generate material for clinical studies. If a pool of clones can be used to produce material for IND‐enabling toxicology studies (Pool for Tox (PFT) strategy) during the time a lead clone is being selected for clinical material production, the toxicology studies can be accelerated significantly (approximately 4 months at Genentech), leading to a potential acceleration of 4 months for the IND submission. We explored the feasibility of the PFT strategy with three antibodies—mAb1, mAb2, and mAb3—at the 2 L scale. For each antibody, two lead cell lines were identified that generated material with similar product quality to the material generated from the associated pool. For two antibody molecules, mAb1 and mAb2, the material generated by the lead cell lines from 2 L bioreactors was tested in an accelerated stability study and was shown to have stability comparable to the material generated by the associated pool. Additionally, we used this approach for two antibody molecules, mAb4 and mAb5, at Tox and GMP production. The materials from the Tox batch at 400 L scale and three GMP batches at 2000 L scale have comparable product quality attributes for both molecules. Our results demonstrate the feasibility of using a pool of clonally derived cell lines to generate material of similar product quality and stability for use in IND‐enabling toxicology studies as was derived from the final production clone, which enabled significant acceleration of timelines into clinical development. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1449–1455, 2017  相似文献   

19.
A human-human hybridoma secreting an anti-Sm mAb designated 4B4 was established by fusion of GM4672 (a lymphoblastoid B cell line) with PWM-activated mononuclear cells from a patient with active SLE. Competitive Ag inhibition assays showed that 4B4 was specific for Sm and did not bind with native or denatured DNA or RNA. Western blot analysis with 4B4 showed that this mAb binds to the B/B' ribonucleoprotein of the Sm/ribonucleo-protein complex. By competitive inhibition assay, 4B4 was demonstrated to partially share idiotypic expression with a mouse anti-Sm mAb designated Y2. This was demonstrated by the ability of each mAb (Y2 or 4B4) to inhibit a homologous anti-idiotypic antibody (either anti-Y2 or anti-4B4) better than the nonhomologous anti-idiotypic antibody. These results confirm previous findings that idiotypes related to Sm-binding are highly conserved in nature. Furthermore, this report is the first idiotypic analysis of a human anti-Sm mAb.  相似文献   

20.
Adalimumab and Infliximab are recombinant IgG1 monoclonal antibodies (mAbs) that bind and neutralize human tumor necrosis factor alpha (TNFα). TNFα forms a stable homotrimer with unique surface‐exposed sites for Adalimumab, Infliximab, and TNF receptor binding. Here, we report the structures of Adalimumab‐TNFα and Infliximab‐TNFα complexes modeled from negative stain EM and cryo‐EM images. EM images reveal complex structures consisting of 1:1, 1:2, 2:2, and 3:2 complexes of Adalimumab‐TNFα and Infliximab‐TNFα. The 2:2 complex structures of Adalimumab‐TNFα and Infliximab‐TNFα show diamond‐shaped profiles and the 2D class averages reveal distinct orientations of the Fab domains, indicating different binding modes by Adalimumab and Infliximab to TNFα. After separation by size exclusion chromatography and analysis by negative stain EM, the 3:2 complexes of Adalimumab‐TNFα or Infliximab‐TNFα complexes are more complicated but retain features recognized in the 2:2 complexes. Preliminary cryo‐EM analysis of 3:2 Adalimumab‐TNFα complex generated a low‐resolution density consistent with a TNFα trimer bound with three Fab domains from three individual antibody molecules, while each antibody molecule binds to two molecules of TNFα trimer. The Fc domains are not visible in the reconstruction. These results show the two mAbs form structurally distinct complexes with TNFα.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号