首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 569 毫秒
1.
Alpha-Synuclein (aSyn) misfolding and aggregation is common in several neurodegenerative diseases, including Parkinson’s disease and dementia with Lewy bodies, which are known as synucleinopathies. Accumulating evidence suggests that secretion and cell-to-cell trafficking of pathological forms of aSyn may explain the typical patterns of disease progression. However, the molecular mechanisms controlling aSyn aggregation and spreading of pathology are still elusive. In order to obtain unbiased information about the molecular regulators of aSyn oligomerization, we performed a microscopy-based large-scale RNAi screen in living cells. Interestingly, we identified nine Rab GTPase and kinase genes that modulated aSyn aggregation, toxicity and levels. From those, Rab8b, Rab11a, Rab13 and Slp5 were able to promote the clearance of aSyn inclusions and rescue aSyn induced toxicity. Furthermore, we found that endocytic recycling and secretion of aSyn was enhanced upon Rab11a and Rab13 expression in cells accumulating aSyn inclusions. Overall, our study resulted in the identification of new molecular players involved in the aggregation, toxicity, and secretion of aSyn, opening novel avenues for our understanding of the molecular basis of synucleinopathies.  相似文献   

2.
Multiple system atrophy (MSA) is a fatal neurodegenerative disease where the histopathological hallmark is glial cytoplasmic inclusions in oligodendrocytes, rich of aggregated alpha-synuclein (aSyn). Therefore, therapies targeting aSyn aggregation and toxicity have been studied as a possible disease-modifying therapy for MSA. Our earlier studies show that inhibition of prolyl oligopeptidase (PREP) with KYP-2047 reduces aSyn aggregates in several models. Here, we tested the effects of KYP-2047 on a MSA cellular models, using rat OLN-AS7 and human MO3.13 oligodendrocyte cells. As translocation of p25α to cell cytosol has been identified as an inducer of aSyn aggregation in MSA models, the cells were transiently transfected with p25α. Similar to earlier studies, p25α increased aSyn phosphorylation and aggregation, and caused tubulin retraction and impaired autophagy in OLN-AS7 cells. In both cellular models, p25α transfection increased significantly aSyn mRNA levels and also increased the levels of inactive protein phosphatase 2A (PP2A). However, aSyn or p25α did not cause any cellular death in MO3.13 cells, questioning their use as a MSA model. Simultaneous administration of 10 µM KYP-2047 improved cell viability, decreased insoluble phosphorylated aSyn and normalized autophagy in OLN-AS7 cells but similar impact was not seen in MO3.13 cells.  相似文献   

3.
Alpha-synuclein (aSyn) is implicated in Parkinson’s disease and several other neurodegenerative disorders. To date, the function and intracellular dynamics of aSyn are still unclear. Here, we tracked the dynamics of aSyn using photoactivatable green fluorescent protein as a reporter. We found that the availability of the aSyn N terminus modulates its shuttling into the nucleus. Interestingly, familial aSyn mutations altered the dynamics at which the protein distributes throughout the cell. Both the A30P and A53T aSyn mutations increase the speed at which the protein moves between the nucleus and cytoplasm, respectively. We also found that specific kinases potentiate the shuttling of aSyn between nucleus and cytoplasm. A mutant aSyn form that blocks S129 phosphorylation, S129A, results in the formation of cytoplasmic inclusions, suggesting phosphorylation modulates aggregation in addition to modulating aSyn intracellular dynamics. Finally, we found that the molecular chaperone HSP70 accelerates the entry of aSyn into the nuclear compartment.  相似文献   

4.
《Journal of molecular biology》2019,431(14):2581-2598
The recent discovery of biologically active fully disordered, so called random fuzzy protein–protein interactions leads to the question of how the high flexibility of these protein complexes correlates to aggregation and pathologic misfolding.We identify the structural mechanism by which a random fuzzy protein complex composed of the intrinsically disordered proteins alpha-Synuclein and SERF1a is able to potentiate cytotoxic aggregation. A structural model derived from an integrated NMR/SAXS analysis of the reconstituted aSyn:SERF1a complex enabled us to observe the partial deprotection of one precise aSyn amyloid nucleation element in the fully unstructured ensemble. This minimal exposure was sufficient to increase the amyloidogenic tendency of SERF1a-bound aSyn.Our findings provide a structural explanation of the previously observed pro-amyloid activity of SERF1a. They further demonstrate that random fuzziness can trigger a structurally organized disease-associated reaction such as amyloid polymerization.  相似文献   

5.
The aggregation, deposition, and dysfunction of alpha-synuclein (aSyn) are common events in neurodegenerative disorders known as synucleinopathies. These include Parkinson''s disease, dementia with Lewy bodies, and multiple system atrophy. A growing body of knowledge on the biology of aSyn is emerging and enabling novel hypotheses to be tested. In particular, the hypothesis that aSyn is secreted from neurons, thus contributing to the spreading of pathology not only in the brain but also in other organs, is gaining momentum. Nevertheless, the precise mechanism(s) of secretion, as well as the consequences of extracellular aSyn species for neighboring cells are still unclear. Here, we review the current literature and integrate existing data in order to propose possible mechanisms of secretion, cell dysfunction, and death. Ultimately, the complete understanding of these processes might open novel avenues for the development of new therapeutic strategies.  相似文献   

6.
Huntington disease is a neurodegenerative disorder caused by the expansion of polyglutamine (polyQ) at the N-terminal of the huntingtin exon 1 protein. The detailed structure and the mechanism behind this aggregation remain unclear and it is assumed that the polyQ undergoes a conformational transition to the β-sheet structure when it aggregates. Investigating the misfolding of polyQ facilitates the determination of the molecular mechanism of aggregation and can potentially help in developing a novel approach to inhibit polyQ aggregation. Moreover, the flanking sequences of the polyQ region play a vital role in structural changes and the aggregation mechanism. We performed all-atom molecular dynamics simulations to gain structural insights into the aggregation mechanism using eight different models with glutamine repeat lengths Q27, Q27P11, Q34, Q35, Q36, Q40, Q50, and Q50P11. In the models without flanking polyPs, we noticed that the transformation of a random coil to β-sheet occurs when the number of Q increases. We also found that the flanking polyPs prevent aggregation by decreasing the probability of forming a β-sheet structure. When polyQ length increases, the 17 N-terminal flanking residues are more likely to adopt a β-sheet conformation from α-helix and coil. From our simulations, we suggest that at least 34 glutamines are required for initiating aggregation and 40 residues length is critical for the aggregation of huntingtin exon 1 protein for disease onset. This study provides structural insights into misfolding and the role of flanking sequences in huntingtin aggregation which will further help in developing therapeutic strategies for Huntington's disease.  相似文献   

7.
Prolyl oligopeptidase (PREP) accelerates the aggregation of α-synuclein (aSyn), a key protein involved in development of Parkinson disease and other synucleinopathies. PREP inhibitors reduce aSyn aggregation, but the mechanism has remained unknown. We have now used protein-fragment complementation assays (PCA) and microscale thermophoresis in parallel to show that PREP interacts directly with aSyn in both intact cells and in a cell-free system. Using split luciferase-based PCA, we first showed that PREP enhances the formation of soluble aSyn dimers in live Neuro-2A neuroblastoma cells. A PREP inhibitor, KYP-2047, reduced aSyn dimerization in PREP-expressing cells but not in cells lacking PREP expression. aSyn dimerization was also enhanced by PREP(S554A), an enzymatically inactive PREP mutant, but this was not affected by KYP-2047. PCA and microscale thermophoresis studies showed that aSyn interacts with both PREP and PREP(S554A) with low micromolar affinity. Neither the proline-rich, C-terminal domain of aSyn nor the hydrolytic activity of PREP was required for the interaction with PREP. Our results show that PREP binds directly to aSyn to enhance its dimerization and may thus serve as a nucleation point for aSyn aggregation. Native gel analysis showed that KYP-2047 shifts PREP to a compact monomeric form with reduced ability to promote aSyn nucleation. As PREP inhibition also enhances autophagic clearance of aSyn, PREP inhibitors may reduce accumulation of aSyn inclusions via a dual mechanism and are thus a novel therapeutic candidate for synucleinopathies. Our results also suggest that PREP has other cellular functions in addition to its peptidase activity.  相似文献   

8.
The mechanism by which the neural cell adhesion molecule, N-CAM, mediates homophilic interactions between cells has been variously attributed to an isologous interaction of the third immunoglobulin (Ig) domain, to reciprocal binding of the two N-terminal Ig domains, or to reciprocal interactions of all five Ig domains. Here, we have used a panel of recombinant proteins in a bead binding assay, as well as transfected and primary cells, to clarify the molecular mechanism of N-CAM homophilic binding. The entire extracellular region of N-CAM mediated bead aggregation in a concentration- and temperature-dependent manner. Interactions of the N-terminal Ig domains, Ig1 and Ig2, were essential for bead binding, based on deletion and mutation experiments and on antibody inhibition studies. These findings were largely in accord with aggregation experiments using transfected L cells or primary chick brain cells. Additionally, maximal binding was dependent on the integrity of the intramolecular domain-domain interactions throughout the extracellular region. We propose that these interactions maintain the relative orientation of each domain in an optimal configuration for binding. Our results suggest that the role of Ig3 in homophilic binding is largely structural. Several Ig3-specific reagents failed to affect N-CAM binding on beads or on cells, while an inhibitory effect of an Ig3-specific monoclonal antibody is probably due to perturbations at the Ig2-Ig3 boundary. Thus, it appears that reciprocal interactions between Ig1 and Ig2 are necessary and sufficient for N-CAM homophilic binding, but that maximal binding requires the quaternary structure of the extracellular region defined by intramolecular domain-domain interactions.  相似文献   

9.
Finding elements of proteins that influence ligand binding specificity is an essential aspect of research in many fields. To assist in this effort, this paper presents two statistical models, based on the same theoretical foundation, for evaluating structural similarity among binding cavities. The first model specializes in the "unified" comparison of whole cavities, enabling the selection of cavities that are too dissimilar to have similar binding specificity. The second model enables a "regionalized" comparison of cavities within a user-defined region, enabling the selection of cavities that are too dissimilar to bind the same molecular fragments in the given region. We applied these models to analyze the ligand binding cavities of the serine protease and enolase superfamilies. Next, we observed that our unified model correctly separated sets of cavities with identical binding preferences from other sets with varying binding preferences, and that our regionalized model correctly distinguished cavity regions that are too dissimilar to bind similar molecular fragments in the user-defined region. These observations point to applications of statistical modeling that can be used to examine and, more importantly, identify influential structural similarities within binding site structure in order to better detect influences on protein-ligand binding specificity.  相似文献   

10.
The overproduction of reactive oxygen species (ROS) induces oxidative stress, a well-known process associated with aging and several human pathologies, such as cancer and neurodegenerative diseases. A large number of synthetic compounds have been described as antioxidant enzyme mimics, capable of eliminating ROS and/or reducing oxidative damage. In this study, we investigated the antioxidant activity of a water-soluble 1,10-phenantroline-octanediaoate Mn2+-complex on cells under oxidative stress, and assessed its capacity to attenuate alpha-synuclein (aSyn) toxicity and aggregation, a process associated with increased oxidative stress. This Mn2+-complex exhibited a significant antioxidant potential, reducing intracelular oxidation and increasing oxidative stress resistance in S. cerevisiae cells and in vivo, in G. mellonella, increasing the activity of the intracellular antioxidant enzymes superoxide dismutase and catalase. Strikingly, the Mn2+-complex reduced both aSyn oligomerization and aggregation in human cell cultures and, using NMR and DFT/molecular docking we confirmed its interaction with the C-terminal region of aSyn. In conclusion, the Mn2+-complex appears as an excellent lead for the design of new phenanthroline derivatives as alternative compounds for preventing oxidative damages and oxidative stress - related diseases.  相似文献   

11.
Alpha-synuclein (aSyn) is the main component of proteinaceous inclusions known as Lewy bodies (LBs), the typical pathological hallmark of Parkinson''s disease (PD) and other synucleinopathies. Although aSyn is phosphorylated at low levels under physiological conditions, it is estimated that ∼90% of aSyn in LBs is phosphorylated at S129 (pS129). Nevertheless, the significance of pS129 in the biology of aSyn and in PD pathogenesis is still controversial. Here, we harnessed the power of budding yeast in order to assess the implications of phosphorylation on aSyn cytotoxicity, aggregation and sub-cellular distribution. We found that aSyn is phosphorylated on S129 by endogenous kinases. Interestingly, phosphorylation reduced aSyn toxicity and the percentage of cells with cytosolic inclusions, in comparison to cells expressing mutant forms of aSyn (S129A or S129G) that mimic the unphosphorylated form of aSyn. Using high-resolution 4D imaging and fluorescence recovery after photobleaching (FRAP) in live cells, we compared the dynamics of WT and S129A mutant aSyn. While WT aSyn inclusions were very homogeneous, inclusions formed by S129A aSyn were larger and showed FRAP heterogeneity. Upon blockade of aSyn expression, cells were able to clear the inclusions formed by WT aSyn. However, this process was much slower for the inclusions formed by S129A aSyn. Interestingly, whereas the accumulation of WT aSyn led to a marked induction of autophagy, cells expressing the S129A mutant failed to activate this protein quality control pathway. The finding that the phosphorylation state of aSyn on S129 can alter the ability of cells to clear aSyn inclusions provides important insight into the role that this posttranslational modification may have in the pathogenesis of PD and other synucleinopathies, opening novel avenues for investigating the molecular basis of these disorders and for the development of therapeutic strategies.  相似文献   

12.
Despite insights on the cellular level, the molecular details of chromatin reorganization in sperm development, which involves replacement of histone proteins by specialized factors to allow ultra most condensation of the genome, are not well understood. Protamines are dispensable for DNA condensation during Drosophila post-meiotic spermatogenesis. Therefore, we analyzed the interaction of Mst77F, another very basic testis-specific protein with chromatin and DNA as well as studied the molecular consequences of such binding. We show that Mst77F on its own causes severe chromatin and DNA aggregation. An intrinsically unstructured domain in the C-terminus of Mst77F binds DNA via electrostatic interaction. This binding results in structural reorganization of the domain, which induces interaction with an N-terminal region of the protein. Via putative cooperative effects Mst77F is induced to multimerize in this state causing DNA aggregation. In agreement, overexpression of Mst77F results in chromatin aggregation in fly sperm. Based on these findings we postulate that Mst77F is crucial for sperm development by giving rise to a unique condensed chromatin structure.  相似文献   

13.
Using bioinformatic tools, mutagenesis, and binding studies, we have investigated the structural organization of the extracellular region of the RET receptor tyrosine kinase, a functional receptor for glial cell line-derived neurotrophic factor (GDNF). Multiple sequence alignments of seven vertebrate sequences and one invertebrate RET sequence delineated four distinct N-terminal domains, each of about 110 residues, containing many of the consensus motifs of the cadherin fold. Based on these alignments and the crystal structures of epithelial and neural cadherins, we have generated molecular models of each of the four cadherin-like domains in the extracellular region of human RET. The modeled structures represent realistic models from both energetic and geometrical points of view and are consistent with previous observations gathered from biochemical analyses of the effects of Hirschsprung's disease mutations affecting the folding and stability of the RET molecule, as well as our own site-directed mutagenesis studies of RET cadherin-like domain 1. We have also investigated the role of Ca(2+) in ligand binding by RET and found that Ca(2+) ions are required for RET binding to GDNF but not for GDNF binding to the GFRalpha1 co-receptor. In agreement with these results, RET, but not GFRalpha1, was found to bind Ca(2+) directly. Our results indicate that the overall architecture of the extracellular region of RET is more closely related to cadherins than previously thought. The models of the cadherin-like domains of human RET represent valuable tools with which to guide future site-directed mutagenesis studies aimed at identifying residues involved in ligand binding and receptor activation.  相似文献   

14.
Patients with Parkinson''s disease (PD) often have aggregated α-synuclein (aSyn) in enteric nervous system (ENS) neurons, which may be associated with the development of constipation. This occurs well before the onset of classic PD motor symptoms. We previously found that aging A53T transgenic (Tg) mice closely model PD-like ENS aSyn pathology, making them appropriate for testing potential PD therapies. Here we show that Tg mice overexpressing mutant human aSyn develop ENS pathology by 4 months. We then evaluated the responses of Tg mice and their WT littermates to the Food and Drug Administration-approved drug FTY720 (fingolimod, Gilenya) or vehicle control solution from 5 months of age. Long term oral FTY720 in Tg mice reduced ENS aSyn aggregation and constipation, enhanced gut motility, and increased levels of brain-derived neurotrophic factor (BDNF) but produced no significant change in WT littermates. A role for BDNF was directly assessed in a cohort of young A53T mice given vehicle, FTY720, the Trk-B receptor inhibitor ANA-12, or FTY720 + ANA-12 from 1 to 4 months of age. ANA-12-treated Tg mice developed more gut aSyn aggregation as well as constipation, whereas FTY720-treated Tg mice had reduced aSyn aggregation and less constipation, occurring in part by increasing both pro-BDNF and mature BDNF levels. The data from young and old Tg mice revealed FTY720-associated neuroprotection and reduced aSyn pathology, suggesting that FTY720 may also benefit PD patients and others with synucleinopathy. Another finding was a loss of tyrosine hydroxylase immunoreactivity in gut neurons with aggregated aSyn, comparable with our prior findings in the CNS.  相似文献   

15.
The prion protein is usually pictured as globular structured C-terminal domain that is linked to an extended flexible N-terminal tail. However, in its physiological form, it is a glycoprotein tethered to the cell surface via a C-terminal GPI anchor. The low solubility of PrP even without GPI anchor and its strong tendency for aggregation has forced most structural investigations to be performed at low pH and mostly with N-terminally truncated variants. In the present study, we have used a synthetic peptide related to the PrP tetra-octarepeat region, i.e., the sequence (Pro-His-Gly-Gly-Gly-Trp-Gly-Gln)(4), for NMR structural analysis of its preferred conformation in DPC micelles as membrane mimic. Well-defined and identical loops are observed between the four octarepeats that are linked by flexible Gly-Gly-Gly sequences. Interaction with the micelles is mainly through the tryptophan residues that appear to act as anchors. Copper binding to the peptide in the presence of DPC micelles revealed marked conformational rearrangements although binding to the micelles is preserved. Interestingly, titration experiments point to cooperative effects for the four binding sites. A destabilization of the DPC micelles by the peptide parallels the destabilizing effect of the prion protein on membranes so that the octarepeat region appears to be very membrane-active. How the physico-chemical properties reported here are linked to the function and significance of the prion protein remains a puzzle as long as the functional mechanism of the prion protein is not precisely elucidated. Nevertheless, our results emphasize the strong influence of the (membrane) environment on the PrP properties.  相似文献   

16.
Spinocerebellar ataxia (SCA) 3, the most common form of SCA, is a neurodegenerative rare disease characterized by polyglutamine tract expansion and self-assembly of Ataxin3 (At3) misfolded proteins into highly organized fibrillar aggregates. The At3 N-terminal Josephin Domain (JD) has been suggested as being responsible for mediating the initial phase of the At3 double-step fibrillogenesis. Several issues concerning the residues involved in the JD’s aggregation and, more generally, the JD clumping mechanism have not been clarified yet. In this paper we present an investigation focusing on the JD protein-protein interaction by means of molecular modeling. Our results suggest possible aminoacids involved in JD contact together with local and non-local effects following JD dimerization. Surprisingly, JD conformational changes following the binding may involve ubiquitin binding sites and hairpin region even though they do not pertain to the JD interaction surfaces. Moreover, the JD binding event has been found to alter the hairpin open-like conformation toward a closed-like arrangement over the simulated timescale. Finally, our results suggest that the JD aggregation might be a multi-step process, with an initial fast JD-JD binding mainly driven by Arg101, followed by slower structural global rearrangements involving the exposure to the solvent of Leu84-Trp87, which might play a role in a second step of JD aggregation.  相似文献   

17.
The neural cell adhesion molecule axonin-1/TAG-1 mediates cell-cell interactions via homophilic and heterophilic contacts. It consists of six Ig and four fibronectin type III domains anchored to the membrane by glycosylphosphatidylinositol. The recently solved crystal structure indicates a module composed of the four N-terminal Ig domains as the contact site between trans-interacting axonin-1 molecules from apposed membranes. Here, we have tested domain-specific monoclonal antibodies for their capacity to interfere with homophilic binding in a cell aggregation assay. The results confirmed the existence of a binding region within the N-terminal Ig domains and identified a second region contributing to homophilic binding on the third and fourth fibronectin domains near the C terminus. The perturbation of each region alone resulted in a complete loss of cell aggregation, suggesting that axonin-1-mediated cell-cell contact results from a cooperative action of two homophilic binding regions. The data support that axonin-1-mediated cell-cell contact is formed by cis-assisted trans-binding. The N-terminal binding regions of axonin-1 establish a linear zipper-like string of trans-interacting axonin-1 molecules alternately provided by the two apposed membranes. The C-terminal binding regions strengthen the cell-cell contact by enhancing the expansion of the linear string into a two-dimensional array via cis-interactions. Cis-assisted trans-binding may be a basic binding mechanism common to many cell adhesion molecules.  相似文献   

18.
Annexins are a multigene family of proteins involved in aggregation and fusion processes of biological membranes. One of its best-known members is annexin A2 (or p36), capable of binding to acidic phospholipids in a calcium-dependent manner, as occurs with other members of the same family. In its heterotetrameric form, especially with protein S100A10 (p11), annexin A2 has been involved as a determinant factor in innumerable biological processes like tumor development or anticoagulation. However, the subcellular coexistence of different pools of the protein, in which the monomeric form of annexin A2 is growing in functional relevance, is to date poorly described. In this work we present an exhaustive structural and functional characterization of monomeric human annexin A2 by using different recombinant mutants. The important role of the amphipathic N-terminal α-helix in membrane binding and aggregation has been analyzed. We have also studied the potential implication of lateral “antiparallel” protein dimers in membrane aggregation. In contrast to what was previously suggested, formation of these dimers negatively regulate aggregation. We have also confirmed the essential role of three lysine residues located in the convex surface of the molecule in calcium-free and calcium-dependent membrane binding and aggregation. Finally, we propose models for annexin A2-mediated vesicle aggregation mechanisms.  相似文献   

19.
Syncytin-A, a new mouse endogenous retroviral envelope protein expressed in placenta, can mediate cell fusion in vitro. But its physiological function was still unknown. We proposed a role for syncytin-A in syncytiotrophoblast (SynT) formation derived from the differentiation of trophoblast stem (TS) cells during placental development. To evaluate this hypothesis, we analyzed the involvement of syncytin-A in the differentiation of mouse TS cells. After withdrawing fibroblast growth factor 4 (FGF4), TS cells can fuse to form SynT cells. We found syncytin-A mRNA and protein expression are colinear with fusion index increase during TS cell differentiation. Expression of syncytin-A is localized in SynT cells through in situ immunofluorescent staining. By using specific antibody and antisense oligonucleotides, we demonstrated that inhibition of syncytin-A lead to obvious decrease of SynT cell formation. These results present evidence in support of the direct role for syncytin-A in mouse TS cell fusion and differentiation involved in placental development.  相似文献   

20.
Small heat shock proteins (sHSPs) are a family of ATP-independent molecular chaperones which prevent cellular protein aggregation by binding to misfolded proteins. sHSPs form large oligomers that undergo drastic rearrangement/dissociation in order to execute their chaperone activity in protecting substrates from stress. Substrate-binding sites on sHSPs have been predominantly mapped on their intrinsically disordered N-terminal arms. This region is highly variable in sequence and length across species, and has been implicated in both oligomer formation and in mediating chaperone activity. Here, we present our results on the functional and structural characterization of five sHSPs in rice, each differing in their subcellular localisation, viz., cytoplasm, nucleus, chloroplast, mitochondria and peroxisome. We performed activity assays and dynamic light scattering studies to highlight differences in the chaperone activity and quaternary assembly of sHSPs targeted to various organelles. By cloning constructs that differ in the length and sequence of the tag in the N-terminal region, we have probed the sensitivity of sHSP oligomer assembly and chaperone activity to the length and amino acid composition of the N-terminus. In particular, we have shown that the incorporation of an N-terminal tag has significant consequences on sHSP quaternary structure.

Electronic supplementary material

The online version of this article (doi:10.1007/s12192-015-0570-7) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号