首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Many bacterial pathogens secrete potent toxins to aid in the destruction of host tissue, to initiate signaling changes in host cells or to manipulate immune system responses during the course of infection. Though methods have been developed to successfully purify and produce many of these important virulence factors, there are still many bacterial toxins whose unique structure or extensive post-translational modifications make them difficult to purify and study in in vitro systems. Furthermore, even when pure toxin can be obtained, there are many challenges associated with studying the specific effects of a toxin under relevant physiological conditions. Most in vitro cell culture models designed to assess the effects of secreted bacterial toxins on host cells involve incubating host cells with a one-time dose of toxin. Such methods poorly approximate what host cells actually experience during an infection, where toxin is continually produced by bacterial cells and allowed to accumulate gradually during the course of infection. This protocol describes the design of a permeable membrane insert-based bacterial infection system to study the effects of Streptolysin S, a potent toxin produced by Group A Streptococcus, on human epithelial keratinocytes. This system more closely mimics the natural physiological environment during an infection than methods where pure toxin or bacterial supernatants are directly applied to host cells. Importantly, this method also eliminates the bias of host responses that are due to direct contact between the bacteria and host cells. This system has been utilized to effectively assess the effects of Streptolysin S (SLS) on host membrane integrity, cellular viability, and cellular signaling responses. This technique can be readily applied to the study of other secreted virulence factors on a variety of mammalian host cell types to investigate the specific role of a secreted bacterial factor during the course of infection.  相似文献   

2.
3.
Harpreet Singh 《FEBS letters》2010,584(10):2112-10897
Plasma membrane channels have been extensively studied, and their physiological roles are well established. In contrast, relatively little information is available about intracellular ion channels. Chloride Intracellular Channel (CLICs) proteins are a novel class of putative intracellular ion channels. They are widely expressed in different intracellular compartments, and possess distinct properties such as the presence of a single transmembrane domain, and a dimorphic existence as either a soluble or membranous form. How these soluble proteins unfold, target to, and auto-insert into the intracellular membranes to form functional integral ion channels is a complex biological question. Recent information from studies of their crystal structures, biophysical characterization and functional roles has provoked interest in these unusual channels.  相似文献   

4.
5.
6.
There is a growing body of evidence to show that that C-reactive protein (CRP), an acute phase reactant, is one of the most valuable predictors of future cardiovascular events. Since CRP proteins directly contribute to the development and progression of atherosclerosis as well, reduction of CRP levels may be a novel therapeutic target for the treatment of cardiovascular disease. In this study, we examined whether pigment epithelium-derived factor (PEDF) could block the interleukin-6-induced CRP expression in cultured human hepatoma cells and the way that it might achieve this effect. PEDF inhibited the IL-6-induced CRP expression in Hep3B cells at both mRNA and proteins levels. PEDF suppressed the intracellular reactive oxygen species generation in IL-6-exposed Hep3B cells. Anti-oxidants mimicked the effects of PEDF. PEDF was also found to inhibit the IL-6-elicited Rac-1 activation, whereas dominant-negative Rac-1 dose-dependently decreased the CRP mRNA levels. PEDF blocked the IL-6-induced STAT3 phosphorylations and NF-kappaB p65 activity in Hep3B cells. Our present study suggests that PEDF could be one of the potent suppressors of CRP production by the liver and may play a protective role against atherosclerosis.  相似文献   

7.
8.
9.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号