首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Primordial germ cells (PGCs) are undifferentiated germ cells in developing fetuses. As these cells give rise to definitive oocytes and spermatozoa that contribute to new life in the next generation, their development must be under strict control, regarding genetic and epigenetic aspects. However, we do not know to what extent their development depends on the specific milieu. In this study, we transplanted mouse PGCs collected from male and female gonads at 12.5 days postcoitum, together with gonadal somatic cells, under kidney capsules of adult mice. The transplanted PGC and gonadal somatic cells constructed testis-like and ovary-like tissues, respectively, under the kidney capsules within 4 wk. Normal-appearing round spermatids and fully grown germinal vesicle (GV) oocytes developed within these tissues. Ectopic spermatogenesis continued thereafter, while oogenesis consisted of only a single wave. The injection of these round spermatids directly into mature in vivo-derived oocytes led to the birth at term of normal pups. PGC-derived GV oocytes were isolated, induced to mature in vitro, and injected with normal spermatozoa. The injected oocytes were successfully fertilized and developed into normal pups. Our findings demonstrate the remarkable flexibility of PGC development, which can proceed up to the functional gamete stage under spatially and temporally noninnate conditions. This transplantation system may provide a unique technical basis for induction of the development of early germ cells of exogenous origins, such as those from embryonic stem cells.  相似文献   

3.
During embryogenesis, primordial germ cells (PGCs) have the potential to enter either spermatogenesis or oogenesis. In a female genital ridge, or in a non-gonadal environment, PGCs develop as meiotic oocytes. However, male gonadal somatic cells inhibit PGCs from entering meiosis and direct them to a spermatogenic fate. We have examined the ability of PGCs from male and female embryos to respond to the masculinising environment of the male genital ridge, defining a temporal window during which PGCs retain a bipotential fate. To help understand how PGCs respond to the male gonadal environment, we have identified molecular differences between male PGCs that are committed to spermatogenesis and bipotential female PGCs. Our results suggest that one way in which PGCs respond to this masculinising environment is to synthesise prostaglandin D(2). We show that this signalling molecule can partially masculinise female embryonic gonads in culture, probably by inducing female supporting cells to differentiate into Sertoli cells. In the developing testis, prostaglandin D(2) may act as a paracrine factor to induce Sertoli cell differentiation. Thus part of the response of PGCs to the male gonadal environment is to generate a masculinising feedback loop to ensure male differentiation of the surrounding gonadal somatic cells.  相似文献   

4.
5.
The commitment of germ cells to either oogenesis or spermatogenesis occurs during fetal gonad development: germ cells enter meiosis or mitotic arrest, depending on whether they reside within an ovary or a testis, respectively. Despite the critical importance of this step for sexual reproduction, gene networks underlying germ cell development have remained only partially understood. Taking advantage of the W(v) mouse model, in which gonads lack germ cells, we conducted a microarray study to identify genes expressed in fetal germ cells. In addition to distinguishing genes expressed by germ cells from those expressed by somatic cells within the developing gonads, we were able to highlight specific groups of genes expressed only in female or male germ cells. Our results provide an important resource for deciphering the molecular pathways driving proper germ cell development and sex determination and will improve our understanding of the etiology of human germ cell tumors that arise from dysregulation of germ cell differentiation.  相似文献   

6.
7.
Sun J  Shang X  Tian Y  Zhao W  He Y  Chen K  Cheng H  Zhou R 《The FEBS journal》2008,275(2):242-249
The ubiquitin-proteasome pathway is crucial for a variety of biological processes, including spermatogenesis. Ubiquitin C-terminal hydrolase-L1 (Uch-L1) is thought to associate with monoubiquitin to control ubiquitin levels. Here, we report the identification of Uch-L1 cDNA from the testis of the rice field eel, a natural sex reversal vertebrate, by using cDNA microarray analysis. Uch-L1 encodes a protein of 220 amino acids that shows high homology to Uch-L1 of vertebrates, especially fish species. Both mRNA and protein are mainly expressed in testis, ovotestis and ovary, as well as in the brain. Immunohistochemistry analysis revealed differential expression of Uch-L1 in three kinds of gonads. In the ovary, expression of Uch-L1 was observed mainly in the developing ovary and slightly in the mature ovary. In ovotestis during the intersex stage, Uch-L1 was expressed in the male gonad epithelium and degraded ovary. In testis, expression was observed in developing germ cells, including spermatogonia and spermatocytes. Furthermore, Uch-L1 was upregulated during gonadal transformation, especially from the beginning of the intersex stage onwards. Native-PAGE showed that Uch-L1 underwent dimerization and oligomerization in gonads, and that the relative level of dimerization/oligomerization decreased during gonadal transformation. Simultaneously, ubiquitin polypeptide expression was upregulated during this process. These results suggest that Uch-L1, via the ubiquitin-proteasome system, may play an important role not only in gametogenesis, but also in the gonadal transformation process in the rice field eel.  相似文献   

8.
为研究miR-202-5p在鱼类中作用的靶基因及功能,采用荧光定量PCR和原位杂交技术构建了miR-202-5p在牙鲆(Paralichthys olivaceus)不同组织和雌雄性腺中的表达谱。定量结果发现, miR-202-5p在牙鲆性腺中具有特异性的高表达,且在精巢中的表达水平高于卵巢。原位杂交结果显示, miR-202-5p主要在精巢的精原细胞和精母细胞中表达,而仅在卵巢的Ⅳ和Ⅴ期卵母细胞中有较强烈表达。研究发现色素框同源蛋白2(Chromobox homolog 2, CBX2)在性腺发育中具有重要调节作用,为进一步研究miR-202-5p在牙鲆性腺发育中的功能,采用生物信息学方法预测和双荧光素酶报告基因技术鉴定了二者的靶向关系,结果证实, cbx2为miR-202-5p直接调节的靶基因,为深入阐述miR-202-5p在牙鲆性腺发育中的作用机制提供了基础。  相似文献   

9.
In the ovotestis of Helix pomatia both oogenesis and spermatogenesis were influenced by treatments with steroid hormones produced in the gonads of higher vertebrates. Testosterone influenced gametogenesis to a small degree. Progesterone and oestrone-acetate at first stimulated ovogenesis, but they also acted on spermatogenesis. All three hormones examined influenced oogenesis in a conspicuous and significant way, while their effect on spermatogenesis was indistinct.  相似文献   

10.

Background  

Investigating gonadal gene expression is important in attempting to elucidate the molecular mechanism of sex determination and differentiation in the model species zebrafish. However, the small size of juvenile zebrafish and correspondingly their gonads complicates this type of investigation. Furthermore, the lack of a genetic sex marker in juvenile zebrafish prevents pooling gonads from several individuals. The aim of this study was to establish a method to isolate the gonads from individual juvenile zebrafish allowing future investigations of gonadal gene expression during sex determination and differentiation.  相似文献   

11.
银鲫种系细胞标记分子Vasa: cDNA克隆及其抗体制备   总被引:3,自引:0,他引:3  
种系细胞始自胚胎发育早期,是动物生殖及生殖工程的基础。为研究鱼类的种系细胞提供标记分子,我们克隆并鉴定了银鲫的vasacDNA即Cagvasa。CagvasacDNA全长2771碱基(nt),编码的蛋白为银鲫Vasa即CagVasa,全长701个氨基酸(aa)。CagVasa蛋白与已知Vasa蛋白的结构特征一致:在N端有14个RGG重复序列,在C端Vasa所特有的8个功能域俱全。银鲫Vasa与鲤鱼、斑马鱼、陆生脊椎动物和果蝇的Vasa蛋白分别有95%,89%,61%-66%和50%的同源性。卵巢切片的RNA原位杂交揭示,Cagvasa限于种系细胞,且表达水平呈现出低-高-低的动态变化:即两头低(卵原细胞跟Ⅳ期成熟卵子),中间高(Ⅱ-Ⅲ期卵子)。为分析鱼类种系细胞提供手段,我们用310aa的N端序列产生细菌的重组蛋白来免疫大白兔,获得了抗Vasa的多克隆抗体αVasa。Western免疫印迹表明,αVasa特异性地识别一个鱼类性腺的蛋白,该蛋白的分子量为75kD,仅见于银鲫的性腺和卵子。卵巢切片的组织免疫荧光共聚焦显微分析表明,抗体αVasa只对种系细胞染色:卵原细胞着色最深,卵母细胞和早期的卵子都浓染,成熟卵则浅染。类似情况亦见之于精子发生早期阶段的雄性种系细胞。卵巢和精巢的体细胞则不着色。因此,Cagvasa编码的当是Vasa同源蛋白,为银鲫种系细胞的第一个标记分子。我们的研究表明,抗体αVasa染色灵敏度高,特异性好,当是鉴别银鲫及其它鲤科鱼类的种系细胞的有效手段  相似文献   

12.
13.
14.
Using Atlantic cod (Gadus morhua) as a model organism, the aim of this report was to delineate whether teleostean eggshell zona radiata proteins have their origin, i.e., site of synthesis, in gonadal or somatic tissues. Estradiol-17 beta was administered intraperitoneally to one-year-old cod (Gadus morhua) with either undeveloped gonads or with differentiated gonads. By immunoblotting procedures estradiol-dependent protein induction was investigated using specific rabbit antisera directed against cod eggshell proteins and brown trout vitellogenin. No immunological cross-reactions were observed between the two antisera, and eggshell proteins and vitellogenin were detected in blood plasma and somatic tissues only in estradiol-treated cod. Three plasma-components were immunoreactive to antiserum directed against eggshell proteins, and these proteins possessed molecular weights of 78, 54 and 47 kDa, identical to the molecular weights of the cod eggshell alpha, beta and gamma zona radiata-proteins. These three immunoreactive plasma-components were observed after administration of estradiol-17 beta to both sexes, also in males having reached spermiation, and in juveniles of either sex without developed gonads. The data are interpreted to signify that cod eggshell zona radiata-proteins originate in an extra-ovarian tissue and are transported in the blood for deposition in the ovaries. We propose that oogenesis involves estradiol-17 beta regulation of both eggshell zona radiata-proteins and vitellogenin synthesis.  相似文献   

15.
16.
17.
[目的]在蜂群中,雄蜂与蜂王都有着发育完全的性腺,但两者达到性成熟的时间却是不同步的.本研究旨在探究中华蜜蜂Apis cerana cerana雄蜂与蜂王生殖腺的基因表达差异.[方法]利用Illumina测序技术对中华蜜蜂雄蜂精巢与蜂王卵巢转录组差异表达基因(differentially expressed genes...  相似文献   

18.
应用组织学方法及免疫组织化学技术显示,黄鳝性逆转生殖发育过程中,生殖干细胞(GSCs)定位分布于生殖褶中,黄鳝雌性发育阶段的GSCs分散或成团存在,间性及雄性发育阶段GSCs均区分为A、B两种不同类型,雌性发育阶段GSCs与A、B两类GSCs在超微结构上存在差异。结果表明,生殖褶中GSCs是黄鳝分化生殖腺中唯一具有有丝分裂能力的生殖细胞群,雌性发育阶段GSCs表现出卵原干细胞特征,间性及雄性发育阶段GSCs为精原干细胞。CD49整合素是黄鳝雌性发育阶段GSCs和A类GSCs的表征分子。  相似文献   

19.
20.
Two isoforms of vasa mRNA and protein are present in a teleost fish, tilapia. One (vas-s) lacks a part of the N-terminal region found in the other isoform (vas). Both isoforms are expressed in oocytes through the embryonic stage when primordial germ cells (PGCs) localize in the lateral plate mesoderm. After PGC localization in the gonadal anlagen, vas-s expression increased and vas expression became undetectable. Expression of both isoforms was observed again after morphological gonadal sex differentiation, irrespective of genotypic sex. In ovary, compared with vas expression vas-s expression predominated throughout oogenesis. In testis, vas expression was predominant compared with vas-s during spermatogenesis. These results indicate that relative expression of two vasa isoforms is dependent upon germ cell differentiation and sex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号