首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
A robust, rapid and flexible real-time PCR assay for hierarchical genetic typing of clinical and environmental isolates of Francisella is presented. Typing markers were found by multiple genome and gene comparisons, from which 23 canonical single nucleotide polymorphisms (canSNPs) and 11 canonical insertion-deletion mutations (canINDELs) were selected to provide phylogenetic guidelines for classification from genus to isolate level. The specificity of the developed assay, which uses 68 wells of a 96-well real-time PCR format with a detection limit of 100 pg DNA, was assessed using 62 Francisella isolates of diverse genetic and geographical origins. It was then successfully used for typing 14 F. tularensis subsp. holarctica isolates obtained from tularemia patients in Sweden in 2008 and five more genetically diverse Francisella isolates of global origins. When applied to human ulcer specimens for direct pathogen detection the results were incomplete due to scarcity of DNA, but sufficient markers were identified to detect fine-resolution differences among F. tularensis subsp. holarctica isolates causing infection in the patients. In contrast to other real-time PCR assays for Francisella, which are typically designed for specific detection of a species, subspecies, or strain, this type of assay can be easily tailored to provide appropriate phylogenetic and/or geographical resolution to meet the objectives of the analysis.  相似文献   

3.

Background

A low genetic diversity in Francisella tularensis has been documented. Current DNA based genotyping methods for typing F. tularensis offer a limited and varying degree of subspecies, clade and strain level discrimination power. Whole genome sequencing is the most accurate and reliable method to identify, type and determine phylogenetic relationships among strains of a species. However, lower cost typing schemes are necessary in order to enable typing of hundreds or even thousands of isolates.

Results

We have generated a high-resolution phylogenetic tree from 40 Francisella isolates, including 13 F. tularensis subspecies holarctica (type B) strains, 26 F. tularensis subsp. tularensis (type A) strains and a single F. novicida strain. The tree was generated from global multi-strain single nucleotide polymorphism (SNP) data collected using a set of six Affymetrix GeneChip® resequencing arrays with the non-repetitive portion of LVS (type B) as the reference sequence complemented with unique sequences of SCHU S4 (type A). Global SNP based phylogenetic clustering was able to resolve all non-related strains. The phylogenetic tree was used to guide the selection of informative SNPs specific to major nodes in the tree for development of a genotyping assay for identification of F. tularensis subspecies and clades. We designed and validated an assay that uses these SNPs to accurately genotype 39 additional F. tularensis strains as type A (A1, A2, A1a or A1b) or type B (B1 or B2).

Conclusion

Whole-genome SNP based clustering was shown to accurately identify SNPs for differentiation of F. tularensis subspecies and clades, emphasizing the potential power and utility of this methodology for selecting SNPs for typing of F. tularensis to the strain level. Additionally, whole genome sequence based SNP information gained from a representative population of strains may be used to perform evolutionary or phylogenetic comparisons of strains, or selection of unique strains for whole-genome sequencing projects.  相似文献   

4.
Molecular and phylogeographic studies have led to the definition within the Mycobacterium tuberculosis complex (MTBC) of a number of geotypes and ecotypes showing a preferential geographic location or host preference. The MTBC is thought to have emerged in Africa, most likely the Horn of Africa, and to have spread worldwide with human migrations. Under this assumption, there is a possibility that unknown deep branching lineages are present in this region. We genotyped by spoligotyping and multiple locus variable number of tandem repeats (VNTR) analysis (MLVA) 435 MTBC isolates recovered from patients. Four hundred and eleven isolates were collected in the Republic of Djibouti over a 12 year period, with the other 24 isolates originating from neighbouring countries. All major M. tuberculosis lineages were identified, with only two M. africanum and one M. bovis isolates. Upon comparison with typing data of worldwide origin we observed that several isolates showed clustering characteristics compatible with new deep branching. Whole genome sequencing (WGS) of seven isolates and comparison with available WGS data from 38 genomes distributed in the different lineages confirms the identification of ancestral nodes for several clades and most importantly of one new lineage, here referred to as lineage 7. Investigation of specific deletions confirms the novelty of this lineage, and analysis of its precise phylogenetic position indicates that the other three superlineages constituting the MTBC emerged independently but within a relatively short timeframe from the Horn of Africa. The availability of such strains compared to the predominant lineages and sharing very ancient ancestry will open new avenues for identifying some of the genetic factors responsible for the success of the modern lineages. Additional deep branching lineages may be readily and efficiently identified by large-scale MLVA screening of isolates from sub-Saharan African countries followed by WGS analysis of a few selected isolates.  相似文献   

5.
The zoonotic disease tularemia is caused by the bacterium Francisella tularensis. This pathogen is considered as a category A select agent with potential to be misused in bioterrorism. Molecular typing based on DNA-sequence like canSNP-typing or MLVA has become the accepted standard for this organism. Due to the organism’s highly clonal nature, the current typing methods have reached their limit of discrimination for classifying closely related subpopulations within the subspecies F. tularensis ssp. holarctica. We introduce a new gene-by-gene approach, MLST+, based on whole genome data of 15 sequenced F. tularensis ssp. holarctica strains and apply this approach to investigate an epidemic of lethal tularemia among non-human primates in two animal facilities in Germany. Due to the high resolution of MLST+ we are able to demonstrate that three independent clones of this highly infectious pathogen were responsible for these spatially and temporally restricted outbreaks.  相似文献   

6.
Three Bordetella pertussis typing methods, pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST), and multi-locus variable number tandem repeat analysis (MLVA) were compared using a collection of Swedish strains. Of the three typing methods used, PFGE was found to be the most discriminatory. MLVA and MLST were less discriminatory, but may be valuable for strain discrimination when culture is not possible as they are based on PCR. The combination of MLVA/MLST was found to be equally discriminatory as PFGE and should therefore also be considered. The relationship between predominant lineages in Sweden and the Netherlands, characterized by the PFGE type BpSR11 and the allele for the pertussis toxin promoter ptxP3, respectively, was investigated. Linkage was found between the PFGE type BpSR11 and ptxP3 in that all BpSR11 strains carried ptxP3. On the other hand ptxP3 was found in several other PFGE-types. The presence of the ptxP3 allele in different genetic backgrounds may indicate horizontal gene transfer within B. pertussis or homoplasy. Alternatively, this observation may be due to convergence of PFGE types.  相似文献   

7.
The case rate of Q fever in Europe has increased dramatically in recent years, mainly because of an epidemic in the Netherlands in 2009. Consequently, there is a need for more extensive genetic characterization of the disease agent Coxiella burnetii in order to better understand the epidemiology and spread of this disease. Genome reference data are essential for this purpose, but only thirteen genome sequences are currently available. Current methods for typing C. burnetii are criticized for having problems in comparing results across laboratories, require the use of genomic control DNA, and/or rely on markers in highly variable regions. We developed in this work a method for single nucleotide polymorphism (SNP) typing of C. burnetii isolates and tissue samples based on new assays targeting ten phylogenetically stable synonymous canonical SNPs (canSNPs). These canSNPs represent previously known phylogenetic branches and were here identified from sequence comparisons of twenty-one C. burnetii genomes, eight of which were sequenced in this work. Importantly, synthetic control templates were developed, to make the method useful to laboratories lacking genomic control DNA. An analysis of twenty-one C. burnetii genomes confirmed that the species exhibits high sequence identity. Most of its SNPs (7,493/7,559 shared by >1 genome) follow a clonal inheritance pattern and are therefore stable phylogenetic typing markers. The assays were validated using twenty-six genetically diverse C. burnetii isolates and three tissue samples from small ruminants infected during the epidemic in the Netherlands. Each sample was assigned to a clade. Synthetic controls (vector and PCR amplified) gave identical results compared to the corresponding genomic controls and are viable alternatives to genomic DNA. The results from the described method indicate that it could be useful for cheap and rapid disease source tracking at non-specialized laboratories, which requires accurate genotyping, assay accessibility and inter-laboratory comparisons.  相似文献   

8.
Aims: To establish whether investigated subtyping methods could identify any specific characteristics that distinguish Swedish VTEC O157:H7 strains isolated from cattle farms associated with human enterohaemorrhagic Escherichia coli (EHEC) cases from cattle strains isolated in prevalence studies. Methods and Results: Strains (n = 32) isolated in a dairy herd prevalence study and strains isolated from farms associated with human cases (n = 13) were subjected to typing. Partial sequencing of the vtx2 genes could not identify any unique variants of vtx2 or vtx2c in strains associated with human cases. A specific variant of VTEC O157:H7, which was overrepresented among farms associated with human cases (P = 0·01), was by two different single‐nucleotide‐polymorphism (SNP) assays identified as clade 8, a subgroup of VTEC O157:H7 strains considered to be putatively hypervirulent. Multi‐locus variable number tandem repeat analysis (MLVA) typing of all strains produced similar results as pulsed‐field gel electrophoresis (PFGE) typing regarding clustering of the strains, but MLVA distinguished slightly better among strains than PFGE. Conclusion: In Sweden, VTEC O157:H7 strains from the putatively hypervirulent clade 8 are overrepresented among isolates from cattle farms associated with human cases compared with VTEC O157:H7 strains isolated in prevalence studies. Significance and Impact of the Study: Real‐time PCR SNP typing for clade 8 can be used to identify cattle farms that are at higher risk of causing EHEC infections in humans.  相似文献   

9.
Mycoplasma bovis has been considered an important cause of mastitis, pneumonia, and arthritis in bovines with a highly detrimental economic impact in the livestock industry. Previous epidemiological studies, using different typing techniques showed that the isolates were usually heterogeneous and results were difficult to compare between different laboratories. Reliable and comparable molecular typing techniques using geographically and temporal distinct isolates have never been used. The objective of this study was to use multiple-locus variable-number tandem-repeat analysis (MLVA) for the differentiation of M. bovis isolates. This typing scheme was developed using the sequenced genome of the M. bovis PG45 type strain. Nine tandem-repeat sequences were selected and the genetic diversity of 37 isolates of wide geographic and temporal origins was analyzed. The results were compared to those obtained with random amplified polymorphic DNA (RAPD) analysis and pulsed-field gel electrophoresis (PFGE) for the same isolates. Cluster concordance between techniques was evaluated using Adjusted Rand and Wallace coefficients, and different cutoff levels of similarity were tested. Acceptable values of ≥0.5 for all techniques for the Wallace coefficient were only observed at the most relaxed cutoff level, i.e., 52% for MLVA, 29% for PFGE and 18% for RAPD. The Simpson's index of diversity was 0.91 for MLVA, 0.99 for RAPD analysis and 0.99 for PFGE. This MLVA assay is compatible with simple PCR and agarose gel-based electrophoresis steps as well as with high-throughput automated methods. The molecular typing scheme presented in this study provides a fast, reliable, and cost-effective typing method for surveillance of M. bovis epidemiology.  相似文献   

10.

Background

The increasing occurrence of livestock-associated (LA) methicillin-resistant Staphylococcus aureus (MRSA) associated with the clonal complex (CC) 398 within the past years shows the importance of standardized and comparable typing methods for the purposes of molecular surveillance and outbreak detection. Multiple-locus variable number of tandem repeats analysis (MLVA) has recently been described as an alternative and highly discriminative tool for S. aureus. However, until now the applicability of MLVA for the typing of LA-MRSA isolates from different geographic origin has not been investigated in detail. We therefore compared MLVA and S. aureus protein A (spa) typing for characterizing porcine MRSA from distinct Dutch and German farms.

Methodology/Principal Findings

Overall, 134 MRSA isolates originating from 21 different pig-farms in the Netherlands and 36 farms in Germany comprising 21 different spa types were subjected to MLVA-typing. Amplification and subsequent automated fragment sizing of the tandem repeat loci on a capillary sequencer differentiated these 134 isolates into 20 distinct MLVA types. Whereas overall MLVA and spa typing showed the same discriminatory power to type LA-MRSA (p  = 0.102), MLVA was more discriminatory than spa typing for isolates associated with the prevalent spa types t011 and t034 (Simpson’s Index of Diversity 0.564 vs. 0.429, respectively; p<0.001).

Conclusion

Although the applied MLVA scheme was not more discriminatory than spa typing in general, it added valuable information to spa typing results for specific spa types (t011, t034) which are highly prevalent in the study area, i.e. Dutch-German border area. Thus, both methods may complement each other to increase the discriminatory power to resolute highly conserved clones such as CC398 (spa types t011, t034) for the detection of outbreaks and molecular surveillance of zoonotic MRSA.  相似文献   

11.
Here we report the complete, accurate 1.89-Mb genome sequence of Francisella tularensis subsp. holarctica strain FSC200, isolated in 1998 in the Swedish municipality Ljusdal, which is in an area where tularemia is highly endemic. This genome is important because strain FSC200 has been extensively used for functional and genetic studies of Francisella and is well-characterized.  相似文献   

12.
Aim: To investigate the phylogeography of French Francisella tularensis ssp. holarctica isolates. Methods and Results: Canonical SNPs and MLVA were used to genotype 103 French F. tularensis ssp. holarctica isolates. We confirmed the presence of one subclade, the central and western European group (B.Br.FTNF002‐00), and identified four major MLVA genotypes with no obvious geographical differentiation. Conclusions: The lack of geographical resolution among MLVA genotypes suggests rapid dispersal, convergent evolution or a combination of the two. Significance and Impact of the Study: This study expands knowledge of the phylogeography of one of the two dominant European F. tularensis ssp. holarctica subclades and illustrates the need for additional SNP discovery within this subclade.  相似文献   

13.
Francisella tularensis, the etiologic agent of tularemia and a Class A Select Agent, is divided into three subspecies and multiple subpopulations that differ in virulence and geographic distribution. Given these differences, there is a need to rapidly and accurately determine if a strain is F. tularensis and, if it is, assign it to subspecies and subpopulation. We designed TaqMan real-time PCR genotyping assays using eleven single nucleotide polymorphisms (SNPs) that were potentially specific to closely related groups within the genus Francisella, including numerous subpopulations within F. tularensis species. We performed extensive validation studies to test the specificity of these SNPs to particular populations by screening the assays across a set of 565 genetically and geographically diverse F. tularensis isolates and an additional 21 genetic near-neighbor (outgroup) isolates. All eleven assays correctly determined the genetic groups of all 565 F. tularensis isolates. One assay differentiates F. tularensis, F. novicida, and F. hispaniensis from the more genetically distant F. philomiragia and Francisella-like endosymbionts. Another assay differentiates F. tularensis isolates from near neighbors. The remaining nine assays classify F. tularensis-confirmed isolates into F. tularensis subspecies and subpopulations. The genotyping accuracy of these nine assays diminished when tested on outgroup isolates (i.e. non F. tularensis), therefore a hierarchical approach of assay usage is recommended wherein the F. tularensis-specific assay is used before the nine downstream assays. Among F. tularensis isolates, all eleven assays were highly sensitive, consistently amplifying very low concentrations of DNA. Altogether, these eleven TaqMan real-time PCR assays represent a highly accurate, rapid, and sensitive means of identifying the species, subspecies, and subpopulation of any F. tularensis isolate if used in a step-wise hierarchical scheme. These assays would be very useful in clinical, epidemiological, and/or forensic investigations involving F. tularensis.  相似文献   

14.
The emerging pathogen Cryptococcus gattii causes life-threatening disease in immunocompetent and immunocompromised hosts. Of the four major molecular types (VGI-VGIV), the molecular type VGIII has recently emerged as cause of disease in otherwise healthy individuals, prompting a need to investigate its population genetic structure to understand if there are potential genotype-dependent characteristics in its epidemiology, environmental niche(s), host range and clinical features of disease. Multilocus sequence typing (MLST) of 122 clinical, environmental and veterinary C. gattii VGIII isolates from Australia, Colombia, Guatemala, Mexico, New Zealand, Paraguay, USA and Venezuela, and whole genome sequencing (WGS) of 60 isolates representing all established MLST types identified four divergent sub-populations. The majority of the isolates belong to two main clades, corresponding either to serotype B or C, indicating an ongoing species evolution. Both major clades included clinical, environmental and veterinary isolates. The C. gattii VGIII population was genetically highly diverse, with minor differences between countries, isolation source, serotype and mating type. Little to no recombination was found between the two major groups, serotype B and C, at the whole and mitochondrial genome level. C. gattii VGIII is widespread in the Americas, with sporadic cases occurring elsewhere, WGS revealed Mexico and USA as a likely origin of the serotype B VGIII population and Colombia as a possible origin of the serotype C VGIII population. Serotype B isolates are more virulent than serotype C isolates in a murine model of infection, causing predominantly pulmonary cryptococcosis. No specific link between genotype and virulence was observed. Antifungal susceptibility testing against six antifungal drugs revealed that serotype B isolates are more susceptible to azoles than serotype C isolates, highlighting the importance of strain typing to guide effective treatment to improve the disease outcome.  相似文献   

15.
Aims: To screen for the globally spread cluster of Enterococcus faecium, clonal complex 17 (CC17) and characterize the genetic profile of Swedish clinical Ent. faecium isolates. Methods: A total of 203 consecutive isolates collected from 2004 to 2007 from patients with bacteraemia in Sweden. All isolates were genotyped using multiple‐locus variable‐number tandem repeat analysis (MLVA) and 20 isolates representing different MLVA types (MT) were chosen for multilocus sequence typing (MLST). Minimal inhibitory concentrations against clinically relevant antibiotics were determined with agar dilution. Presence of the virulence genes esp and hyl was investigated using PCR. Results: A total of 65% (n = 109) of all isolates belonged to MT‐1, and the second most common MLVA type was MT‐159 (13%, n = 21). MLST analysis confirmed the presence of CC17 during the entire study period. The number of isolates resistant to gentamicin and vancomycin, as well as the presence of hyl, increased significantly during the investigation period. Conclusions: The present study demonstrates that nosocomial infections caused by Ent. faecium CC17 are commonly occurring in Sweden. Significance and Impact of the Study: This is the first report of CC17 Ent. faecium in Sweden. The increase of antibiotic resistance and virulence indicates that these strains are further adapting to the hospital environment.  相似文献   

16.

Background

Understanding Mycobacterium tuberculosis (Mtb) transmission is essential to guide efficient tuberculosis control strategies. Traditional strain typing lacks sufficient discriminatory power to resolve large outbreaks. Here, we tested the potential of using next generation genome sequencing for identification of outbreak-related transmission chains.

Methods and Findings

During long-term (1997 to 2010) prospective population-based molecular epidemiological surveillance comprising a total of 2,301 patients, we identified a large outbreak caused by an Mtb strain of the Haarlem lineage. The main performance outcome measure of whole genome sequencing (WGS) analyses was the degree of correlation of the WGS analyses with contact tracing data and the spatio-temporal distribution of the outbreak cases. WGS analyses of the 86 isolates revealed 85 single nucleotide polymorphisms (SNPs), subdividing the outbreak into seven genome clusters (two to 24 isolates each), plus 36 unique SNP profiles. WGS results showed that the first outbreak isolates detected in 1997 were falsely clustered by classical genotyping. In 1998, one clone (termed “Hamburg clone”) started expanding, apparently independently from differences in the social environment of early cases. Genome-based clustering patterns were in better accordance with contact tracing data and the geographical distribution of the cases than clustering patterns based on classical genotyping. A maximum of three SNPs were identified in eight confirmed human-to-human transmission chains, involving 31 patients. We estimated the Mtb genome evolutionary rate at 0.4 mutations per genome per year. This rate suggests that Mtb grows in its natural host with a doubling time of approximately 22 h (400 generations per year). Based on the genome variation discovered, emergence of the Hamburg clone was dated back to a period between 1993 and 1997, hence shortly before the discovery of the outbreak through epidemiological surveillance.

Conclusions

Our findings suggest that WGS is superior to conventional genotyping for Mtb pathogen tracing and investigating micro-epidemics. WGS provides a measure of Mtb genome evolution over time in its natural host context. Please see later in the article for the Editors'' Summary  相似文献   

17.
Francisella tularensis subspecies tularensis (type A) and holarctica (type B) are of clinical importance in causing tularemia. Molecular typing methods have further separated type A strains into three genetically distinct clades, A1a, A1b and A2. Epidemiological analyses of human infections in the United States suggest that A1b infections are associated with a significantly higher mortality rate as compared to infections caused by A1a, A2 and type B. To determine if genetic differences as defined by molecular typing directly correlate with differences in virulence, A1a, A1b, A2 and type B strains were compared in C57BL/6 mice. Here we demonstrate significant differences between survival curves for infections caused by A1b versus A1a, A2 and type B, with A1b infected mice dying earlier than mice infected with A1a, A2 or type B; these results were conserved among multiple strains. Differences were also detected among type A clades as well as between type A clades and type B with respect to bacterial burdens, and gross anatomy in infected mice. Our results indicate that clades defined within F. tularensis subsp. tularensis by molecular typing methods correlate with virulence differences, with A1b strains more virulent than A1a, A2 and type B strains. These findings indicate type A strains are not equivalent with respect to virulence and have important implications for public health as well as basic research programs.  相似文献   

18.
Chlamydia abortus, an obligate intracellular bacterium, is the most common infectious cause of abortion in small ruminants worldwide and has zoonotic potential. We applied multilocus sequence typing (MLST) together with multiple-locus variable-number tandem repeat analysis (MLVA) to genotype 94 ruminant C. abortus strains, field isolates and samples collected from 1950 to 2011 in diverse geographic locations, with the aim of delineating C. abortus lineages and clones. MLST revealed the previously identified sequence types (STs) ST19, ST25, ST29 and ST30, plus ST86, a recently-assigned type on the Chlamydiales MLST website and ST87, a novel type harbouring the hemN_21 allele, whereas MLVA recognized seven types (MT1 to MT7). Minimum-spanning-tree analysis suggested that all STs but one (ST30) belonged to a single clonal complex, possibly reflecting the short evolutionary timescale over which the predicted ancestor (ST19) has diversified into three single-locus variants (ST86, ST87 and ST29) and further, through ST86 diversification, into one double-locus variant (ST25). ST descendants have probably arisen through a point mutation evolution mode. Interestingly, MLVA showed that in the ST19 population there was a greater genetic diversity than in other STs, most of which exhibited the same MT over time and geographical distribution. However, the evolutionary pathways of C. abortus STs seem to be diverse across geographic distances with individual STs restricted to particular geographic locations. The ST30 singleton clone displaying geographic specificity and represented by the Greek strains LLG and POS was effectively distinguished from the clonal complex lineage, supporting the notion that possibly two separate host adaptations and hence independent bottlenecks of C. abortus have occurred through time. The combination of MLST and MLVA assays provides an additional level of C. abortus discrimination and may prove useful for the investigation and surveillance of emergent C. abortus clonal populations.  相似文献   

19.

Background

Plague is a life-threatening disease caused by the bacterium, Yersinia pestis. Since the 1990s, Africa has accounted for the majority of reported human cases. In Uganda, plague cases occur in the West Nile region, near the border with Democratic Republic of Congo. Despite the ongoing risk of contracting plague in this region, little is known about Y. pestis genotypes causing human disease.

Methodology/Principal Findings

During January 2004–December 2012, 1,092 suspect human plague cases were recorded in the West Nile region of Uganda. Sixty-one cases were culture-confirmed. Recovered Y. pestis isolates were analyzed using three typing methods, single nucleotide polymorphisms (SNPs), pulsed field gel electrophoresis (PFGE), and multiple variable number of tandem repeat analysis (MLVA) and subpopulations analyzed in the context of associated geographic, temporal, and clinical data for source patients. All three methods separated the 61 isolates into two distinct 1.ANT lineages, which persisted throughout the 9 year period and were associated with differences in elevation and geographic distribution.

Conclusions/Significance

We demonstrate that human cases of plague in the West Nile region of Uganda are caused by two distinct 1.ANT genetic subpopulations. Notably, all three typing methods used, SNPs, PFGE, and MLVA, identified the two genetic subpopulations, despite recognizing different mutation types in the Y. pestis genome. The geographic and elevation differences between the two subpopulations is suggestive of their maintenance in highly localized enzootic cycles, potentially with differing vector-host community composition. This improved understanding of Y. pestis subpopulations in the West Nile region will be useful for identifying ecologic and environmental factors associated with elevated plague risk.  相似文献   

20.
Multilocus variable-number tandem-repeat analysis (MLVA) is efficient for routine typing and for investigating the genetic structures of natural microbial populations. Two distinct pathovars of Xanthomonas oryzae can cause significant crop losses in tropical and temperate rice-growing countries. Bacterial leaf streak is caused by X. oryzae pv. oryzicola, and bacterial leaf blight is caused by X. oryzae pv. oryzae. For the latter, two genetic lineages have been described in the literature. We developed a universal MLVA typing tool both for the identification of the three X. oryzae genetic lineages and for epidemiological analyses. Sixteen candidate variable-number tandem-repeat (VNTR) loci were selected according to their presence and polymorphism in 10 draft or complete genome sequences of the three X. oryzae lineages and by VNTR sequencing of a subset of loci of interest in 20 strains per lineage. The MLVA-16 scheme was then applied to 338 strains of X. oryzae representing different pathovars and geographical locations. Linkage disequilibrium between MLVA loci was calculated by index association on different scales, and the 16 loci showed linear Mantel correlation with MLSA data on 56 X. oryzae strains, suggesting that they provide a good phylogenetic signal. Furthermore, analyses of sets of strains for different lineages indicated the possibility of using the scheme for deeper epidemiological investigation on small spatial scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号