首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundDementia places a significant burden on both patients and caregivers. Since diabetes is a risk factor for dementia, it is imperative to identify the relationship between diabetes and cognitive disorders. Protein disulfide isomerase (PDI) is an enzyme for oxidative protein folding. PDI S-nitrosylation is observed in the brain tissues of Alzheimer's disease patients. The aim of this study is to clarify the relationship between PDI S-nitrosylation and diabetes.MethodsWe used SH-SY5Y cells cultured in high-glucose media.ResultsS-nitrosylated PDI level increased at 7 days and remained high till 28 days in SH-SY5Y cells cultured in high-glucose media. Using PDI wild-type- or PDI C343S-expressing SH-SY5Y cells, PDI C343 was identified as the site of glucose-induced S-nitrosylation. IRE1α and PERK were phosphorylated at day 14 in the SH-SY5Y cells cultured in high-glucose media, and the phosphorylated status was maintained to day 28. To determine the effect of S-nitrosylated PDI on endoplasmic reticulum stress signaling, SH-SY5Y cells were treated with S-nitrosocystein (SNOC) for 30 min, following which the medium was replaced with SNOC-free media and the cells were cultured for 24 h. Only phosphorylated IRE1α treated with SNOC was associated with PDI S-nitrosylation. Neohesperidin, a flavonoid in citrus fruits, is a natural antioxidant. The treatment with neohesperidin in the final 7 days of glucose loading reversed PDI S-nitrosylation and improved cell proliferation.ConclusionGlucose loading leads to S-nitrosylation of PDI C343 and induces neurodegeneration via IRE1α phosphorylation.General significanceThe results may be useful for designing curative treatment strategies for dementia.  相似文献   

2.
The solute carrier 1A family comprises a group of membrane proteins that act as dual-function amino acid transporters and chloride (Cl) channels and includes the alanine serine cysteine transporters (ASCTs) as well as the excitatory amino acid transporters. ASCT2 is regarded as a promising target for cancer therapy, as it can transport glutamine and other neutral amino acids into cells and is upregulated in a range of solid tumors. The compound L-γ-glutamyl-p-nitroanilide (GPNA) is widely used in studies probing the role of ASCT2 in cancer biology; however, the mechanism by which GPNA inhibits ASCT2 is not entirely clear. Here, we used electrophysiology and radiolabelled flux assays to demonstrate that GPNA activates the Cl conductance of ASCT2 to the same extent as a transported substrate, whilst not undergoing the full transport cycle. This is a previously unreported phenomenon for inhibitors of the solute carrier 1A family but corroborates a body of literature suggesting that the structural requirements for transport are distinct from those for Cl channel formation. We also show that in addition to its currently known targets, GPNA inhibits several of the excitatory amino acid transporters. Together, these findings raise questions about the true mechanisms of its anticancer effects.  相似文献   

3.
Aspartic acid (Asp) undergoes l-isomer-selective efflux transport across the blood-brain barrier (BBB). This transport system appears to play an important role in regulating l- and d-Asp levels in the brain. The purpose of this study was to identify the responsible transporters and elucidate the mechanism for l-isomer-selective Asp transport at the BBB. The l-isomer-selective uptake of Asp by conditionally immortalized mouse brain capillary endothelial cells used as an in vitro model of the BBB took place in an Na+- and pH-dependent manner. This process was inhibited by system ASC substrates such as l-alanine and l-serine, suggesting that system ASC transporters, ASCT1 and ASCT2, are involved in the l-isomer selective transport. Indeed, l-Asp uptake by oocytes injected with either ASCT1 or ASCT2 cRNA took place in a similar manner to that in cultured BBB cells, whereas no significant d-Asp uptake occurred. Although both ASCT1 and ASCT2 mRNA were expressed in the cultured BBB cells, the expression of ASCT2 mRNA was 6.7-fold greater than that of ASCT1. Moreover, immunohistochemical analysis suggests that ASCT2 is localized at the abluminal side of the mouse BBB. These results suggest that ASCT2 plays a key role in l-isomer-selective Asp efflux transport at the BBB.  相似文献   

4.
BACKGROUND: Anaplastic lymphoma kinase (ALK) inhibitor crizotinib has proven to be effective in the treatment of ALK-mutated neuroblastoma, but crizotinib resistance was commonly observed in patients. We aimed to overcome crizotinib resistance by combining with the MEK inhibitor trametinib or low-dose metronomic (LDM) topotecan in preclinical neuroblastoma models. METHODS: We selected a panel of neuroblastoma cell lines carrying various ALK genetic aberrations to assess the therapeutic efficacy on cell proliferation in vitro. Downstream signals of ALK activation, including phosphorylation of ERK1/2, Akt as well as HIF-1α expression were evaluated under normoxic and hypoxic conditions. Tumor growth inhibition was further assessed in NOD/SCID xenograft mouse models. RESULTS: All NBL cell lines responded to crizotinib treatment but at variable ED50 levels, ranging from 0.25 to 5.58 μM. ALK-mutated cell lines SH-SY5Y, KELLY, LAN-5, and CHLA-20 are more sensitive than ALK wild-type cell lines. In addition, we demonstrated that under hypoxic conditions, all NBL cell lines showed marked decrease of ED50s when compared to normoxia except for KELLY cells. Taking into consideration the hypoxia sensitivity to crizotinib, combined treatment with crizotinib and LDM topotecan demonstrated a synergistic effect in ALKF1174L-mutated SH-SY5Y cells. In vivo, single-agent crizotinib showed limited antitumor activity in ALKF1174L-mutated SH-SY5Y and KELLY xenograft models; however, when combined with topotecan, significantly delayed tumor development was achieved in both SH-SY5Y and KELLY tumor models. CONCLUSIONS: Oral metronomic topotecan reversed crizotinib drug resistance in the ALKF1174L-mutated neuroblastoma preclinical model.  相似文献   

5.
Members of the Pht1 family of plant phosphate (Pi) transporters play vital roles in Pi acquisition from soil and in planta Pi translocation to maintain optimal growth and development. The study of the specificities and biochemical properties of Pht1 transporters will contribute to improving the current understanding of plant phosphorus homeostasis and use‐efficiency. In this study, we show through split in vivo interaction methods and in vitro analysis of microsomal root tissues that Arabidopsis thaliana Pht1;1 and Pht1;4 form homomeric and heteromeric complexes. Transient and heterologous expression of the Pht1;1 variants, Pht1;1Y312D, Pht1;1Y312A and Pht1;1Y312F, was used to analyse the role of a putative Pi binding residue (Tyr 312) in Pht1;1 transporter oligomerization and function. The homomeric interaction among Pht1;1 proteins was disrupted by mutation of Tyr 312 to Asp, but not to Ala or Phe. In addition, the Pht1;1Y312D variant conferred enhanced Pi transport when expressed in yeast cells. In contrast, mutation of Tyr 312 to Ala or Phe did not affect Pht1;1 transport kinetics. Our study demonstrates that modifications to the Pht1;1 higher‐order structure affects Pi transport, suggesting that oligomerization may serve as a regulatory mechanism for modulating Pi uptake.  相似文献   

6.
For elucidation of the regulation mechanisms of intrinsic amounts of d-serine (d-Ser) which modulates the neuro-transmission of N-methyl-d-aspartate receptors in the brain, mutant animals lacking serine racemase (SRR) and d-amino acid oxidase (DAO) were established, and the amounts of d-Ser in the tissues and physiological fluids were determined. d-Ser amounts in the frontal brain areas were drastically decreased followed by reduced SRR activity. On the other hand, a moderate but significant decrease in d-Ser amounts was observed in the cerebellum and spinal cord of SRR knock-out (SRR?/?) mice compared with those of control mice, although the amounts of d-Ser in these tissues were low. The amounts of d-Ser in the brain and serum were not altered with aging. To clarify the uptake of exogenous d-Ser into the brain tissues, we have determined the d-Ser of SRR?/? mice after oral administration of d-Ser for the first time, and a drastic increase in d-Ser amounts in all the tested tissues was observed. Because both DAO and SRR are present in some brain areas, we have established the double mutant mice lacking SRR and DAO for the first time, and the contribution of both enzymes to the intrinsic d-Ser amounts was investigated. In the frontal brain, most of the intrinsic d-Ser was biosynthesized by SRR. On the other hand, half of the d-Ser present in the hindbrain was derived from the biosynthesis by SRR. These results indicate that the regulation of intrinsic d-Ser amounts is different depending on the tissues and provide useful information for the development of treatments for neuronal diseases.  相似文献   

7.
The ASCTs (alanine, serine, and cysteine transporters) belong to the solute carrier family 1 (SLC1), which also includes the human glutamate transporters (excitatory amino acid transporters, EAATs) and the prokaryotic aspartate transporter GltPh. Despite the high degree of amino acid sequence identity between family members, ASCTs function quite differently from the EAATs and GltPh. The aim of this study was to mutate ASCT1 to generate a transporter with functional properties of the EAATs and GltPh, to further our understanding of the structural basis for the different transport mechanisms of the SLC1 family. We have identified three key residues involved in determining differences between ASCT1, the EAATs and GltPh. ASCT1 transporters containing the mutations A382T, T459R, and Q386E were expressed in Xenopus laevis oocytes, and their transport and anion channel functions were investigated. A382T and T459R altered the substrate selectivity of ASCT1 to allow the transport of acidic amino acids, particularly l-aspartate. The combination of A382T and T459R within ASCT1 generates a transporter with a similar profile to that of GltPh, with preference for l-aspartate over l-glutamate. Interestingly, the amplitude of the anion conductance activated by the acidic amino acids does not correlate with rates of transport, highlighting the distinction between these two processes. Q386E impaired the ability of ASCT1 to bind acidic amino acids at pH 5.5; however, this was reversed by the additional mutation A382T. We propose that these residues differences in TM7 and TM8 combine to determine differences in substrate selectivity between members of the SLC1 family.  相似文献   

8.
Freidman  Natasha  Chen  Ichia  Wu  Qianyi  Briot  Chelsea  Holst  Jeff  Font  Josep  Vandenberg  Robert  Ryan  Renae 《Neurochemical research》2020,45(6):1268-1286

The Solute Carrier 1A (SLC1A) family includes two major mammalian transport systems—the alanine serine cysteine transporters (ASCT1-2) and the human glutamate transporters otherwise known as the excitatory amino acid transporters (EAAT1-5). The EAATs play a critical role in maintaining low synaptic concentrations of the major excitatory neurotransmitter glutamate, and hence they have been widely researched over a number of years. More recently, the neutral amino acid exchanger, ASCT2 has garnered attention for its important role in cancer biology and potential as a molecular target for cancer therapy. The nature of this role is still being explored, and several classes of ASCT2 inhibitors have been developed. However none have reached sufficient potency or selectivity for clinical use. Despite their distinct functions in biology, the members of the SLC1A family display structural and functional similarity. Since 2004, available structures of the archaeal homologues GltPh and GltTk have elucidated mechanisms of transport and inhibition common to the family. The recent determination of EAAT1 and ASCT2 structures may be of assistance in future efforts to design efficacious ASCT2 inhibitors. This review will focus on ASCT2, the present state of knowledge on its roles in tumour biology, and how structural biology is being used to progress the development of inhibitors.

  相似文献   

9.
Proline transporters (ProTs) originally described as highly selective transporters for proline, have been shown to also transport glycinebetaine (betaine). Here we examined and compared the transport properties of Bet/ProTs from betaine accumulating (sugar beet, Amaranthus, and Atriplex,) and non-accumulating (Arabidopsis) plants. Using a yeast mutant deficient for uptake of proline and betaine, it was shown that all these transporters exhibited higher affinity for betaine than proline. The uptake of betaine and proline was pH-dependent and inhibited by the proton uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP). We also investigated choline transport by using a choline transport-deficient yeast mutant. Results revealed that these transporters exhibited a higher affinity for choline uptake rather than betaine. Uptake of choline by sugar beet BvBet/ProT1 was independent of the proton gradient and the inhibition by CCCP was reduced compared with that for uptake of betaine, suggesting different proton binding properties between the transport of choline and betaine. Additionally, in situ hybridization experiments revealed the localization of sugar beet BvBet/ProT1 in phloem and xylem parenchyma cells.  相似文献   

10.
Nitric oxide synthesis depends on the availability of its precursor L-arginine, which could be regulated by the presence of a specific uptake system. In the present report, the characterization of the L-arginine transport system in mouse adrenal Y1 cells was performed. L-arginine transport was mediated by the cationic/neutral amino acid transport system y+L and the cationic amino acid transporter (CAT) y+ in Y1 cells. These Na+-independent transporters were identified by their selectivity for neutral amino acids in both the presence and absence of Na+ and by the effect of N-ethylmaleimide. Transport data correlated to expression of genes encoding for CAT-1, CAT-2, CD-98, and y+LAT-2. A similar expression profile was detected in rat adrenal zona fasciculata. In addition, cationic amino acid uptake in Y1 cells was upregulated by ACTH and/or cAMP with a concomitant increase in nitric oxide (NO) production.  相似文献   

11.
This study examines the effects of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] on SH-SY5Y human neuroblastoma cells cultured in the presence of medium containing varying concentrations of calcium (0.1, 0.9, 1.4, 1.8 mM). Pyruvate kinase activity was assayed in SH-SY5Y cells incubated in variable calcium medium with or without 1, 10 or 100 nM 1,25(OH)2D3 for 48 h. The enzyme levels showed a significant increase in comparison with control, when the cells were incubated with 100 nM hormone in the presence of 0.1 mM calcium, while pyruvate kinase activity decreased, when the cells were treated with 100 nM 1,25(OH)2D3 in the presence of 1.8 mM calcium. The proliferative activity of SH-SY5Y was dependent on the extracellular concentration of calcium, being the highest at 1.8 mM calcium and completely absent at 0.1 mM calcium. In the presence of 1,25(OH)2D3, at the three concentrations used and after 48 h incubation, a significant decrease in cell number was always observed, without a direct correlation between 1,25(OH)2D3 effect and calcium concentration in the medium. [3H]Thymidine incorporation in SH-SY5Y cells significantly increased in comparison with control, when the 48 h incubation with 1, 10 or 100 nM 1,25(OH)2D3 was carried out in the presence of 0.1 mM calcium, while, at the other calcium concentrations, the hormone did not cause any significant change in this parameter. The treatment of SH-SY5Y cells with 1 nM 1,25(OH)2D3 for 48 h did not affect cell morphology, when 0.1 mM calcium was present, while, in the medium containing 1.8 mM calcium, the treated cells showed a slight trend to differentiation. The differentiating effect of 10 M all-trans retinoic acid, even if incomplete after 48 h treatment, was only observed in the cultures grown in 1.8 mM calcium, in comparison with those maintained in 0.1 mM calcium.  相似文献   

12.
Aggregates of misfolded α-synuclein are a distinctive feature of Parkinson’s disease. Small oligomers of α-synuclein are thought to be an important neurotoxic agent, and α-synuclein aggregates exhibit prion-like behavior, propagating misfolding between cells. α-Synuclein is internalized by both passive diffusion and active uptake mechanisms, but how uptake varies with the size of the oligomer is less clear. We explored how α-synuclein internalization into live SH-SY5Y cells varied with oligomer size by comparing the uptake of fluorescently labeled monomers to that of engineered tandem dimers and tetramers. We found that these α-synuclein constructs were internalized primarily through endocytosis. Oligomer size had little effect on their internalization pathway, whether they were added individually or together. Measurements of co-localization of the α-synuclein constructs with fluorescent markers for early endosomes and lysosomes showed that most of the α-synuclein entered endocytic compartments, in which they were probably degraded. Treatment of the cells with the Pitstop inhibitor suggested that most of the oligomers were internalized by the clathrin-mediated pathway.  相似文献   

13.
S-Nitrosothiols from low-molecular-mass and high-molecular-mass thiols, including glutathione, albumin and hemoglobin, are endogenous potent vasodilators and inhibitors of platelet aggregation. By utilizing the S-transnitrosation reaction and by using the lipophilic (pKL 0.78) and strong nucleophilic synthetic thiol N-acetyl cysteine ethyl ester (NACET) we have developed a GC–MS method for the analysis of S-nitrosothiols and their 15N- or 2H–15N-labelled analogs as S-nitroso-N-acetyl cysteine ethyl ester (SNACET) and S15NACET or d3-S15NACET derivatives, respectively, after their extraction with ethyl acetate. Injection of ethyl acetate solutions of S-nitrosothiols produced two main reaction products, compound X and compound Y, within the injector in dependence on its temperature. Quantification was performed by selected-ion monitoring of m/z 46 (i.e., [NO2]?) for SNACET and m/z 47 (i.e., [15NO2]?) for S15NACET/d3-S15NACET for compound X, and m/z 157 for SNACET and m/z 160 for d3-S15NACET for compound Y. In this article we describe the development, validation and in vitro and in vivo applications of the method to aqueous buffered solutions, human and rabbit plasma. Given the ester functionality of SNACET/S15NACET/d3-S15NACET, stability studies were performed using metal chelators and esterase inhibitors. The method was found to be suitable for the quantitative determination of various S-nitrosothiols including SNACET externally added to human plasma (0–10 μM). Nitrite contamination in ethyl acetate was found to interfere. Our results suggest that the concentration of endogenous S-nitrosothiols in human plasma does not exceed about 200 nM in total. Oral administration of S15NACET to rabbits (40–63 μmol/kg body weight) resulted in formation of ALB-S15NO, [15N]nitrite and [15N]nitrate in plasma.  相似文献   

14.
Parkinson disease is associated with decreased activity of the mitochondrial electron transport chain. This defect can be recapitulated in vitro by challenging dopaminergic cells with 1-methyl-4-phenylpyridinium (MPP+), a neurotoxin that inhibits complex I of electron transport chain. Consequently, oxidative phosphorylation is blocked, and cells become dependent on glycolysis for ATP production. Therefore, increasing the rate of glycolysis might help cells to produce more ATP to meet their energy demands. In the present study, we show that microRNA-7, a non-coding RNA that protects dopaminergic neuronal cells against MPP+-induced cell death, promotes glycolysis in dopaminergic SH-SY5Y and differentiated human neural progenitor ReNcell VM cells, as evidenced by increased ATP production, glucose consumption, and lactic acid production. Through a series of experiments, we demonstrate that targeted repression of RelA by microRNA-7, as well as subsequent increase in the neuronal glucose transporter 3 (Glut3), underlies this glycolysis-promoting effect. Consistently, silencing Glut3 expression diminishes the protective effect of microRNA-7 against MPP+. Further, microRNA-7 fails to prevent MPP+-induced cell death when SH-SY5Y cells are cultured in a low glucose medium, as well as when differentiated ReNcell VM cells or primary mouse neurons are treated with the hexokinase inhibitor, 2-deoxy-d-glucose, indicating that a functional glycolytic pathway is required for this protective effect. In conclusion, microRNA-7, by down-regulating RelA, augments Glut3 expression, promotes glycolysis, and subsequently prevents MPP+-induced cell death. This protective effect of microRNA-7 could be exploited to correct the defects in oxidative phosphorylation in Parkinson disease.  相似文献   

15.
When A. SW (H-2 s) mice are immunized with B10.S (H-2 S) epidermal cells, cytolytic T lymphocytes are evoked that efficiently lyse B10.D2 (H-2 d) as well as B10.S target cells. Immunogenetic analysis of this apparent H-2-unrestricted killing revealed that the most plausible explanation was a sharing of an H-2-restricting epitope by H-2KS and H-2Dd molecules.  相似文献   

16.
TRPM8 (transient receptor potential M8) and TRPA1 (transient receptor potential A1) are cold-temperature-sensitive nociceptors expressed in sensory neurons but their behaviour in neuronal cells is poorly understood. Therefore DNA expression constructs containing human TRPM8 or TRPA1 cDNAs were transfected into HEK (human embryonic kidney cells)-293 or SH-SY5Y neuroblastoma cells and G418 resistant clones analysed for effects of agonists and antagonists on intracellular Ca2+ levels. Approximately 51% of HEK-293 and 12% of SH-SY5Y cell clones expressed the transfected TRP channel. TRPM8 and TRPA1 assays were inhibited by probenecid, indicating the need to avoid this agent in TRP channel studies. A double-residue mutation in ICL-1 (intracellular loop-1) of TRPM8 (SV762,763EL, mimicking serine phosphorylation) or one in the C-terminal tail region (FK1045,1046AG, a lysine knockout) retained sensitivity to agonists (WS 12, menthol) and antagonist {AMTB [N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide]}. SNP (single nucleotide polymorphism) variants in TRPA1 ICL-1 (R797T, S804N) and TRPA1 fusion protein containing C-terminal (His)10 retained sensitivity to agonists (cinnamaldehyde, allyl-isothiocyanate, carvacrol, eugenol) and antagonists (HC-030031, A967079). One SNP variant, 797T, possessed increased sensitivity to agonists. TRPA1 became repressed in SH-SY5Y clones but was rapidly rescued by Src-family inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Conversely, TRPM8 in SH-SY5Y cells was inhibited by PP2. Further studies utilizing SH-SY5Y may identify structural features of TRPA1 and TRPM8 involved in conferring differential post-translational regulation.  相似文献   

17.
Neurons maintain relatively high intracellular concentrations of vitamin C, or ascorbic acid. In this work we studied the mechanisms by which neuronal cells in culture transport and maintain ascorbate, as well as how this system responds to oxidant stress induced by glutamate. Cultured SH-SY5Y neuroblastoma cells took up ascorbate, achieving steady-state intracellular concentrations of 6 mM and higher at extracellular concentrations of 200 μM and greater. This gradient was generated by relatively high affinity sodium-dependent ascorbate transport (K m of 113 μM). Ascorbate was also recycled from dehydroascorbate, the reduction of which was dependent on GSH, but not on d-glucose. Glutamate in concentrations up to 2 mM caused an acute concentration-dependent efflux of ascorbate from the cells, which was prevented by the anion channel blocker 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid. Intracellular ascorbate did not affect radiolabeled glutamate uptake, showing absence of heteroexchange.  相似文献   

18.
Summary The analysis of the individual parts of the Triticum aestivum L. kernel yields a total of 11 peroxidase isozymes: m, n, a, c, d1, d, d2, e, f, g and h (in order from faster to slower migration). Isozymes a, c and d are found in the endosperm (Ed) and seed coats (C), while m, n, d1, d2, e, f, g and h are peculiar to the embryo and scutellum (E + S). The use of the nullitetrasomic and ditellosomic series of Chinese Spring wheat allows peroxidase isozymes to be associated with specific chromosome arms. Isozymes a, c and d (Ed) are associated with chromosome arms 7DS, 4BL and 7AS; whereas isozymes m, d2, e and f are associated with chromosome arms 3DS, 3BL, 3DL and 3DL, respecitvely. Thus, the E + S isozymes are associated with homoeology group 3 and the Ed isozymes with homoeology groups 7 (a and d isozymes) or 4 (c isozymes).  相似文献   

19.
We examined the molecular and functional characterization of choline uptake into human neuroblastoma cell lines (SH-SY5Y: non-cholinergic and LA-N-2: cholinergic neuroblastoma), and the association between choline transport and acetylcholine (ACh) synthesis in these cells. Choline uptake was saturable and mediated by a single transport system. Removal of Na(+) from the uptake buffer strongly enhanced choline uptake. Choline uptake was inhibited by the choline analogue hemicholinium-3 (HC-3) and various organic cations, and was significantly decreased by acidification of the extracellular medium. The increase in choline uptake under Na(+)-free conditions was inhibited by a Na(+)/H(+) exchanger (NHE) inhibitor. Real-time PCR revealed that choline transporter-like protein 1 (CTL1), NHE1 and NHE5 mRNA are mainly expressed. Western blot and immunocytochemical analysis indicated that CTL1 protein was expressed in plasma membrane. ChAT mRNA was expressed at a much higher level in LA-N-2 cells than in SH-SY5Y cells. The conversion of choline to ACh was confirmed in both cells, and was enhanced in Na(+)-free conditions. These findings suggest that CTL1 is functionally expressed in both SH-SY5Y and LA-N-2 cells and is responsible for choline uptake that relies on a directed H(+) gradient as a driving force, and this transport functions in co-operation with NHE1 and NHE5. Furthermore, choline uptake through CTL1 is associated with ACh synthesis in cholinergic neuroblastoma cells.  相似文献   

20.
Anesthesia-related postoperative cognitive dysfunction (POCD) leads to morbidity in the elderly. Lipid peroxidative byproducts (i.e. acrolein) accumulate in aging and may play a role. Sevoflurane, an inhaled anesthetic, sequesters acrolein and enhances the formation of a serotonin-derived melanoid (SDM). SDM may be a biologically relevant polymeric melanoid that we previously showed exhibits redox activity and disrupts lipid bilayers. In this study, we examined the toxicity of SDM in cell culture and looked at protection using L-carnosine. SDM’s toxic effects were tested on neuronal-like SH-SY5Y cells, causing an exponential decrease in viability, while human dermal fibroblasts were completely resistant to the toxic effects. SDM brought about morphological changes to differentiated SH-SY5Y cells, particularly to neuronal processes. Co- but not pre-treatment with L-carnosine protected differentiated SH-SY5Y cells exposed to SDM. Our mechanism suggests focal sevoflurane-induced sequestration of age-related acrolein leading to SDM synthesis and neuronal impairment, which is prevented by L-carnosine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号