首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Staphylococcus aureus is the leading cause of bone and joint infections (BJIs). Staphylococcal pathogenesis involves numerous virulence factors including secreted toxins such as pore-forming toxins (PFTs) and superantigens. The role of these toxins on BJI outcome is largely unknown. In particular, few studies have examined how osteoclasts, the bone-resorbing cells, respond to exposure to staphylococcal PFTs and superantigens. We investigated the direct impact of recombinant staphylococcal toxins on human primary mature monocyte-derived osteoclasts, in terms of cytotoxicity and cell activation with cell death and bone resorption assays, using macrophages of the corresponding donors as a reference. Monocyte-derived osteoclasts displayed similar toxin susceptibility profiles compared to macrophages. Specifically, we demonstrated that the Panton-Valentine leukocidin, known as one of the most powerful PFT which lyses myeloid cells after binding to the C5a receptor, was able to induce the death of osteoclasts. The archetypal superantigen TSST-1 was not cytotoxic but enhanced the bone resorption activity of osteoclasts, suggesting a novel mechanism by which superantigen-producing S. aureus can accelerate the destruction of bone tissue during BJI. Altogether, our data indicate that the diverse clinical presentations of BJIs could be related, at least partly, to the toxin profiles of S. aureus isolates involved in these severe infections.  相似文献   

2.
Qiu J  Zhang X  Luo M  Li H  Dong J  Wang J  Leng B  Wang X  Feng H  Ren W  Deng X 《PloS one》2011,6(1):e16160

Background

The pathogenicity of staphylococcus aureus is dependent largely upon its ability to secrete a number of virulence factors, therefore, anti-virulence strategy to combat S. aureus-mediated infections is now gaining great interest. It is widely recognized that some plant essential oils could affect the production of staphylococcal exotoxins when used at subinhibitory concentrations. Perilla [Perilla frutescens (L.) Britton], a natural medicine found in eastern Asia, is primarily used as both a medicinal and culinary herb. Its essential oil (perilla oil) has been previously demonstrated to be active against S. aureus. However, there are no data on the influence of perilla oil on the production of S. aureus exotoxins.

Methodology/Principal Findings

A broth microdilution method was used to determine the minimum inhibitory concentrations (MICs) of perilla oil against S. aureus strains. Hemolysis, tumour necrosis factor (TNF) release, Western blot, and real-time RT-PCR assays were performed to evaluate the effects of subinhibitory concentrations of perilla oil on exotoxins production in S. aureus. The data presented here show that perilla oil dose-dependently decreased the production of α-toxin, enterotoxins A and B (the major staphylococcal enterotoxins), and toxic shock syndrome toxin 1 (TSST-1) in both methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA).

Conclusions/Significance

The production of α-toxin, SEA, SEB, and TSST-1 in S. aureus was decreased by perilla oil. These data suggest that perilla oil may be useful for the treatment of S. aureus infections when used in combination with β-lactam antibiotics, which can increase exotoxins production by S. aureus at subinhibitory concentrations. Furthermore, perilla oil could be rationally applied in food systems as a novel food preservative both to inhibit the growth of S. aureus and to repress the production of exotoxins, particularly staphylococcal enterotoxins.  相似文献   

3.
Menstrual toxic shock syndrome (TSS) is a serious illness that afflicts women of premenopausal age worldwide and arises from vaginal infection by Staphylococcus aureus and concurrent production of toxic shock syndrome toxin-1 (TSST-1). Studies have illustrated the capacity of lactobacilli to reduce S. aureus virulence, including the capacity to suppress TSST-1. We hypothesized that an aberrant microbiota characteristic of pathogenic bacteria would induce the increased production of TSST-1 and that this might represent a risk factor for the development of TSS. A S. aureus TSST-1 reporter strain was grown in the presence of vaginal swab contents collected from women with a clinically healthy vaginal status, women with an intermediate status, and those diagnosed with bacterial vaginosis (BV). Bacterial supernatant challenge assays were also performed to test the effects of aerobic vaginitis (AV)-associated pathogens toward TSST-1 production. While clinical samples from healthy and BV women suppressed toxin production, in vitro studies demonstrated that Streptococcus agalactiae and Enterococcus spp. significantly induced TSST-1 production, while some Lactobacillus spp. suppressed it. The findings suggest that women colonized by S. aureus and with AV, but not BV, may be more susceptible to menstrual TSS and would most benefit from prophylactic treatment.  相似文献   

4.
Calprotectin, the most abundant cytoplasmic protein in neutrophils, suppresses the growth of Staphylococcus aureus by sequestering the nutrient metal ions Zn and Mn. Here we show that calprotectin can also enhance the activity of the SaeRS two component system (TCS), a signaling system essential for production of over 20 virulence factors in S. aureus. The activity of the SaeRS TCS is repressed by certain divalent ions found in blood or neutrophil granules; however, the Zn bound-form of calprotectin relieves this repression. During staphylococcal encounter with murine neutrophils or staphylococcal infection of the murine peritoneal cavity, calprotectin increases the activity of the SaeRS TCS as well as the production of proinflammatory cytokines such as IL-1β and TNF-α, resulting in higher murine mortality. These results suggest that, under certain conditions, calprotectin can be exploited by S. aureus to increase bacterial virulence and host mortality.  相似文献   

5.
6.
《Gene》1996,168(2):257-260
The human T-cell receptor Vβ2-, D-and J-encoding domains were PCR-amplified from MOLT-4 total cDNA and subcloned in Escherichia coli. The V/D/J fragment was subsequently transferred to a prokaryotic expression vector in frame with a polyhistidine-encoding prosequence which enabled us to affinity-purify the fusion protein with IMAC (immobilized metal-ion affinity chromatorgraphy). Since the recombinant (re-) human T-cell receptor Vβ2 fusion protein (Vβ2 sol) produced in E. coli was found to be insoluble, purification was carried out under denaturating conditions. The purified and renatured re-protein, Vβ2 sol, was immunoreactive with an anti-Vβ2 monoclonal antibody in an ELISA assay. The specificity of Vβ2 sol was shown by its binding in vitro to the staphylococcal superantigen TSST-1, but not to the Staphylococcus aureus exotoxin-1 (SEA).  相似文献   

7.
In this study we examined the presence of Staphylococcus aureus and staphylococcal enterotoxin A (SEA) in 20 industrial breaded chicken products obtained from different retail butchers and supermarket stores in Italy. The levels of contamination in the products analyzed were quite low, although the pH values and water activities (aw) in the samples considered were in ranges favorable for S. aureus growth. As demonstrated by phenotypic and molecular characterization, in spite of the high percentage of coagulase-positive Staphylococcus strains, only three strains could be referred to the species S. aureus. Moreover, all the strains were negative in PCR assays targeting staphylococcal enterotoxin genes (seA to seE, seG to seJ, and seM to seO), as well as the toxic shock syndrome toxin 1 gene, and no SEA was detected in the retail breaded chicken samples analyzed by a reversed passive latex agglutination assay or by Western blotting. Hence, we evaluated the thermal resistance of two strains of SEA-producing S. aureus in a laboratory-scale preparation of precooked breaded chicken cutlets. The heat treatment employed in the manufacture determined the inactivation of S. aureus cells, but the preformed SEA remained active during product storage at 4°C. The presence of the staphylococci and, in particular, of S. aureus in the retail breaded chicken products analyzed is a potential health risk for consumers since the pH and aw values of these kinds of products are favorable for S. aureus growth. The thermal process used during their manufacture can limit staphylococcal contamination but cannot eliminate preformed toxins.  相似文献   

8.
Staphylococcal and streptococcal exotoxins, also known as superantigens, mediate a range of diseases including toxic shock syndrome, and they exacerbate skin, pulmonary and systemic infections caused by these organisms. When present in food sources they can cause enteric effects commonly known as food poisoning. A rapid, sensitive assay for the toxins would enable testing of clinical samples and improve surveillance of food sources. Here we developed a bead-based, two-color flow cytometry assay using single protein domains of the beta chain of T cell receptors engineered for high-affinity for staphylococcal (SEA, SEB and TSST-1) and streptococcal (SpeA and SpeC) toxins. Site-directed biotinylated forms of these high-affinity agents were used together with commercial, polyclonal, anti-toxin reagents to enable specific and sensitive detection with SD50 values of 400 pg/ml (SEA), 3 pg/ml (SEB), 25 pg/ml (TSST-1), 6 ng/ml (SpeA), and 100 pg/ml (SpeC). These sensitivities were in the range of 4- to 80-fold higher than achieved with standard ELISAs using the same reagents. A multiplex format of the assay showed reduced sensitivity due to higher noise associated with the use of multiple polyclonal agents, but the sensitivities were still well within the range necessary for detection in food sources or for rapid detection of toxins in culture supernatants. For example, the assay specifically detected toxins in supernatants derived from cultures of Staphylococcus aureus. Thus, these reagents can be used for simultaneous detection of the toxins in food sources or culture supernatants of potential pathogenic strains of Staphylococcus aureus and Streptococcus pyogenes.  相似文献   

9.
The role of the pore-forming Staphylococcus aureus toxin Panton-Valentine leukocidin (PVL) in severe necrotizing diseases is debated due to conflicting data from epidemiological studies of community-associated methicillin-resistant S. aureus (CA-MRSA) infections and various murine disease-models. In this study, we used neutrophils isolated from different species to evaluate the cytotoxic effect of PVL in comparison to other staphylococcal cytolytic components. Furthermore, to study the impact of PVL we expressed it heterologously in a non-virulent staphylococcal species and examined pvl-positive and pvl-negative clinical isolates as well as the strain USA300 and its pvl-negative mutant. We demonstrate that PVL induces rapid activation and cell death in human and rabbit neutrophils, but not in murine or simian cells. By contrast, the phenol-soluble modulins (PSMs), a newly identified group of cytolytic staphylococcal components, lack species-specificity. In general, after phagocytosis of bacteria different pvl-positive and pvl-negative staphylococcal strains, expressing a variety of other virulence factors (such as surface proteins), induced cell death in neutrophils, which is most likely associated with the physiological clearing function of these cells. However, the release of PVL by staphylococcal strains caused rapid and premature cell death, which is different from the physiological (and programmed) cell death of neutrophils following phagocytosis and degradation of virulent bacteria. Taken together, our results question the value of infection-models in mice and non-human primates to elucidate the impact of PVL. Our data clearly demonstrate that PVL acts differentially on neutrophils of various species and suggests that PVL has an important cytotoxic role in human neutrophils, which has major implications for the pathogenesis of CA-MRSA infections.  相似文献   

10.
BackgroundSuperantigens are indispensable virulence factors for Staphylococcus aureus in disease causation. Superantigens stimulate massive immune cell activation, leading to toxic shock syndrome (TSS) and contributing to other illnesses. However, superantigens differ in their capacities to induce body-wide effects. For many, their production, at least as tested in vitro, is not high enough to reach the circulation, or the proteins are not efficient in crossing epithelial and endothelial barriers, thus remaining within tissues or localized on mucosal surfaces where they exert only local effects. In this study, we address the role of TSS toxin-1 (TSST-1) and most importantly the enterotoxin gene cluster (egc) in infective endocarditis and sepsis, gaining insights into the body-wide versus local effects of superantigens.MethodsWe examined S. aureus TSST-1 gene (tstH) and egc deletion strains in the rabbit model of infective endocarditis and sepsis. Importantly, we also assessed the ability of commercial human intravenous immunoglobulin (IVIG) plus vancomycin to alter the course of infective endocarditis and sepsis.ResultsTSST-1 contributed to infective endocarditis vegetations and lethal sepsis, while superantigens of the egc, a cluster with uncharacterized functions in S. aureus infections, promoted vegetation formation in infective endocarditis. IVIG plus vancomycin prevented lethality and stroke development in infective endocarditis and sepsis.ConclusionsOur studies support the local tissue effects of egc superantigens for establishment and progression of infective endocarditis providing evidence for their role in life-threatening illnesses. In contrast, TSST-1 contributes to both infective endocarditis and lethal sepsis. IVIG may be a useful adjunct therapy for infective endocarditis and sepsis.  相似文献   

11.
Staphylococcus aureus is an intracellular bacterium responsible for serious infectious processes. This pathogen escapes from the phagolysosomal pathway into the cytoplasm, a strategy that allows intracellular bacterial replication and survival with the consequent killing of the eukaryotic host cell and spreading of the infection. S. aureus is able to secrete several virulence factors such as enzymes and toxins. Our recent findings indicate that the main virulence factor of S. aureus, the pore-forming toxin α-hemolysin (Hla), is the secreted factor responsible for the activation of an alternative autophagic pathway. We have demonstrated that this noncanonical autophagic response is inhibited by artificially elevating the intracellular levels of cAMP. This effect is mediated by RAPGEF3/EPAC (Rap guanine nucleotide exchange factor (GEF)3/exchange protein activated by cAMP), a cAMP downstream effector that functions as a GEF for the small GTPase Rap. We have presented evidence that RAPGEF3 and RAP2B, through calpain activation, are the proteins involved in the regulation of Hla and S. aureus-induced autophagy. In addition, we have found that both, RAPGEF3 and RAP2B, are recruited to the S. aureus–containing phagosome. Of note, adding purified α-toxin or infecting the cells with S. aureus leads to a decrease in intracellular cAMP levels, which promotes autophagy induction, a response that favors pathogen intracellular survival, as previously demonstrated. We have identified some key signaling molecules involved in the autophagic response upon infection with a bacterial pathogen, which have important implications in understanding innate immune defense mechanisms.  相似文献   

12.
Autophagy is an intrinsic host defense system that recognizes and eliminates invading bacterial pathogens. We have identified microtubule-associated protein 1 light chain 3 (LC3), a hallmark of autophagy, as a binding partner of phospholipase C-related catalytically inactive protein (PRIP) that was originally identified as an inositol trisphosphate-binding protein. Here, we investigated the involvement of PRIP in the autophagic elimination of Staphylococcus aureus in infected mouse embryonic fibroblasts (MEFs). We observed significantly more LC3-positive autophagosome-like vacuoles enclosing an increased number of S. aureus cells in PRIP-deficient MEFs than control MEFs, 3 h and 4.5 h post infection, suggesting that S. aureus proliferates in LC3-positive autophagosome-like vacuoles in PRIP-deficient MEFs. We performed autophagic flux analysis using an mRFP-GFP-tagged LC3 plasmid and found that autophagosome maturation is significantly inhibited in PRIP-deficient MEFs. Furthermore, acidification of autophagosomes was significantly inhibited in PRIP-deficient MEFs compared to the wild-type MEFs, as determined by LysoTracker staining and time-lapse image analysis performed using mRFP-GFP-tagged LC3. Taken together, our data show that PRIP is required for the fusion of S. aureus-containing autophagosome-like vacuoles with lysosomes, indicating that PRIP is a novel modulator in the regulation of the innate immune system in non-professional phagocytic host cells.  相似文献   

13.
Staphylococcus aureus is a microorganism that causes serious diseases in the human being. This microorganism is able to escape the phagolysosomal pathway, increasing intracellular bacterial survival and killing the eukaryotic host cell to spread the infection. One of the key features of S. aureus infection is the production of a series of virulence factors, including secreted enzymes and toxins. We have shown that the pore-forming toxin α-hemolysin (Hla) is the S. aureus–secreted factor responsible for the activation of the autophagic pathway and that this response occurs through a PI3K/Beclin1-independent form. In the present report we demonstrate that cAMP has a key role in the regulation of this autophagic response. Our results indicate that cAMP is able to inhibit the autophagy induced by Hla and that PKA, the classical cAMP effector, does not participate in this regulation. We present evidence that EPAC and Rap2b, through calpain activation, are the proteins involved in the regulation of Hla-induced autophagy. Similar results were obtained in cells infected with different S. aureus strains. Interestingly, in this report we show, for the first time to our knowledge, that both EPAC and Rap2b are recruited to the S. aureus–containing phagosome. We believe that our findings have important implications in understanding innate immune processes involved in intracellular pathogen invasion of the host cell.  相似文献   

14.
Previous studies have shown that the DM-deficient cell line, T2-I-A(b), is very inefficient at presenting toxic shock syndrome toxin 1 (TSST-1) to T cells, suggesting that I-A(b)-associated peptides play an essential role in the presentation of this superantigen. Consistent with this, the loading of an I-A(b)-binding peptide, staphylococcal enterotoxin B 121-136, onto T2-I-A(b) cells enhanced TSST-1 presentation >1000-fold. However, despite extensive screening, no other peptides have been identified that significantly promote TSST-1 presentation. In addition, the peptide effect on TSST-1 presentation has been demonstrated only in the context of the tumor cell line T2-I-A(b). Here we show that peptides that do not promote TSST-1 presentation can be converted into "promoting" peptides by the progressive truncation of C-terminal residues. These studies result in the identification of two peptides derived from IgGV heavy chain and I-Ealpha proteins that are extremely strong promoters of TSST-1 presentation (47,500- and 12,000-fold, respectively). We have also developed a system to examine the role of MHC class II-associated peptides in superantigen presentation using splenic APC taken directly ex vivo. The data confirmed that the length of the MHC class II-bound peptide plays a critical role in the presentation of TSST-1 by splenic APC and showed that different subpopulations of APC are equally peptide dependent in TSST-1 presentation. Finally, we demonstrated that the presentation of staphylococcal enterotoxin A, like TSST-1, is peptide dependent, whereas staphylococcal enterotoxin B presentation is peptide independent.  相似文献   

15.
Staphylococcus aureus is a major human pathogen, which can invade and survive in non-professional and professional phagocytes. Uptake by host cells is thought to contribute to pathogenicity and persistence of the bacterium. Upon internalization by epithelial cells, cytotoxic S. aureus strains can escape from the phagosome, replicate in the cytosol and induce host cell death. Here, we identified a staphylococcal cysteine protease to induce cell death after translocation of intracellular S. aureus into the host cell cytoplasm. We demonstrated that loss of staphopain A function leads to delayed onset of host cell death and prolonged intracellular replication of S. aureus in epithelial cells. Overexpression of staphopain A in a non-cytotoxic strain facilitated intracellular killing of the host cell even in the absence of detectable intracellular replication. Moreover, staphopain A contributed to efficient colonization of the lung in a mouse pneumonia model. In phagocytic cells, where intracellular S. aureus is exclusively localized in the phagosome, staphopain A did not contribute to cytotoxicity. Our study suggests that staphopain A is utilized by S. aureus to exit the epithelial host cell and thus contributes to tissue destruction and dissemination of infection.  相似文献   

16.
Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.  相似文献   

17.
Protein localization has been traditionally explored in unicellular organisms, whose ease of genetic manipulation facilitates molecular characterization. The two rod-shaped bacterial models Escherichia coli and Bacillus subtilis have been prominently used for this purpose and have displaced other bacteria whose challenges for genetic manipulation have complicated any study of cell biology. Among these bacteria is the spherical pathogenic bacterium Staphylococcus aureus. In this report, we present a new molecular toolbox that facilitates gene deletion in staphylococci in a 1-step recombination process and additional vectors that facilitate the insertion of diverse reporter fusions into newly identified neutral loci of the S. aureus chromosome. Insertion of the reporters does not add any antibiotic resistance genes to the chromosomes of the resultant strains, thereby making them amenable for further genetic manipulations. We used this toolbox to reconstitute the expression of mreB in S. aureus, a gene that encodes an actin-like cytoskeletal protein which is absent in coccal cells and is presumably lost during the course of speciation. We observed that in S. aureus, MreB is organized in discrete structures in association with the membrane, leading to an unusual redistribution of the cell wall material. The production of MreB also caused cell enlargement, but it did not revert staphylococcal shape. We present interactions of MreB with key staphylococcal cell wall-related proteins. This work facilitates the use S. aureus as a model system in exploring diverse aspects of cellular microbiology.  相似文献   

18.
Summary The genes encoding streptococcal pyrogenic exotoxin type A (SPE A) and staphylococcal toxic shock syndrome toxin-1 (TSST-1) were stably cloned and expressed in Bacillus subtilis. In the non-pathogenic Bacillus background, the recombinant speA clone expressed 32-fold more SPE A than the native streptococcus, and similarly, the recombinant plasmid harboring tst expressed 4-fold more TSST-1 in Bacillus than in the native Staphylococcus aureus. The Bacillus-derived products were secreted into the culture fluid, were resistant to proteolytic degradation and their biological activites mimicked native preparations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号