首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The goal of this study is the selective oxyfunctionalization of steroids under mild and environmentally friendly conditions using fungal enzymes. With this purpose, peroxygenases from three basidiomycete species were tested for the hydroxylation of a variety of steroidal compounds, using H2O2 as the only cosubstrate. Two of them are wild-type enzymes from Agrocybe aegerita and Marasmius rotula, and the third one is a recombinant enzyme from Coprinopsis cinerea. The enzymatic reactions on free and esterified sterols, steroid hydrocarbons, and ketones were monitored by gas chromatography, and the products were identified by mass spectrometry. Hydroxylation at the side chain over the steroidal rings was preferred, with the 25-hydroxyderivatives predominating. Interestingly, antiviral and other biological activities of 25-hydroxycholesterol have been reported recently (M. Blanc et al., Immunity 38:106–118, 2013, http://dx.doi.org/10.1016/j.immuni.2012.11.004). However, hydroxylation in the ring moiety and terminal hydroxylation at the side chain also was observed in some steroids, the former favored by the absence of oxygenated groups at C-3 and by the presence of conjugated double bonds in the rings. To understand the yield and selectivity differences between the different steroids, a computational study was performed using Protein Energy Landscape Exploration (PELE) software for dynamic ligand diffusion. These simulations showed that the active-site geometry and hydrophobicity favors the entrance of the steroid side chain, while the entrance of the ring is energetically penalized. Also, a direct correlation between the conversion rate and the side chain entrance ratio could be established that explains the various reaction yields observed.  相似文献   

2.
3.
The interfacial instability between a thiophosphate solid electrolyte and oxide cathodes results in rapid capacity fade and has driven the need for cathode coatings. In this work, the stability, evolution, and performance of uncoated, Li2ZrO3‐coated, and Li3B11O18‐coated LiNi0.5Co0.2Mn0.3O2 cathodes are compared using first‐principles computations and electron microscopy characterization. Li3B11O18 is identified as a superior coating that exhibits excellent oxidation/chemical stability, leading to substantially improved performance over cells with Li2ZrO3‐coated or uncoated cathodes. The chemical and structural origin of the different performance is interpreted using different microscopy techniques which enable the direct observation of the phase decomposition of the Li2ZrO3 coating. It is observed that Li is already extracted from the Li2ZrO3 in the first charge, leading to the formation of ZrO2 nanocrystallites with loss of protection of the cathode. After 50 cycles separated (Co, Ni)‐sulfides and Mn‐sulfides can be observed within the Li2ZrO3‐coated material. This work illustrates the severity of the interfacial reactions between a thiophosphate electrolyte and oxide cathode and shows the importance of using coating materials that are absolutely stable at high voltage.  相似文献   

4.
  1. Download : Download high-res image (151KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
Salinity is one of the most common abiotic stresses in agriculture production. Salt tolerance of rice (Oryza sativa) is an important trait controlled by various genes. The mechanism of rice salt tolerance, currently with limited understanding, is of great interest to molecular breeding in improving grain yield. In this study, a gene regulatory network of rice salt tolerance is constructed using a systems biology approach with a number of novel computational methods. We developed an improved volcano plot method in conjunction with a new machine-learning method for gene selection based on gene expression data and applied the method to choose genes related to salt tolerance in rice. The results were then assessed by quantitative trait loci (QTL), co-expression and regulatory binding motif analysis. The selected genes were constructed into a number of network modules based on predicted protein interactions including modules of phosphorylation activity, ubiquity activity, and several proteinase activities such as peroxidase, aspartic proteinase, glucosyltransferase, and flavonol synthase. All of these discovered modules are related to the salt tolerance mechanism of signal transduction, ion pump, abscisic acid mediation, reactive oxygen species scavenging and ion sequestration. We also predicted the three-dimensional structures of some crucial proteins related to the salt tolerance QTL for understanding the roles of these proteins in the network. Our computational study sheds some new light on the mechanism of salt tolerance and provides a systems biology pipeline for studying plant traits in general.  相似文献   

7.
对蛋白质热稳定性的研究是解析蛋白高级结构,开发蛋白功能及新药物研发过程中的一个重要环节,是对其结构分析的一个重要关切点.观测蛋白质的圆二色光谱随温度程序变化而改变是研究其热稳定性的常用手段,传统的实验方法为选用某一单波长作为测试点,通过连续升温测试蛋白在单波长下的圆二色变温曲线,然后拟合出Tm值,此方法所得的信息有限,...  相似文献   

8.
9.
The human soluble epoxide hydrolase (hsEH) is a key regulator of epoxy fatty acid (EpFA) metabolism. Inhibition of sEH can maintain endogenous levels of beneficial EpFAs and reduce the levels of their corresponding diol products, thus ameliorating a variety of pathological conditions including cardiovascular, central nervous system and metabolic diseases. The quest for orthosteric drugs that bind directly to the catalytic crevice of hsEH has been prolonged and sustained over the past decades, but the disappointing outcome of clinical trials to date warrants alternative pharmacological approaches. Previously, we have shown that hsEH can be allosterically inhibited by the endogenous electrophilic lipid 15-deoxy-Δ12,14-Prostaglandin-J2, via covalent adduction to two cysteines, C423 and C522. In this study, we explore the properties and behaviour of three electrophilic lipids belonging to the class of the nitro fatty acids, namely 9- and 10-nitrooleate and 10-nitrolinoleate. Biochemical and biophysical investigations revealed that, in addition to C423 and C522, nitro fatty acids can covalently bind to additional nucleophilic residues in hsEH C-terminal domain (CTD), two of which predicted in this study to be latent allosteric sites. Systematic mapping of the protein mutational space and evaluation of possible propagation pathways delineated selected residues, both in the allosteric patches and in other regions of the enzyme, envisaged to play a role in allosteric signalling. The responses elicited by the ligands on the covalent adduction sites supports future fragment-based design studies of new allosteric effectors for hsEH with increased efficacy and selectivity.  相似文献   

10.
HK97 is a double-stranded DNA bacteriophage that undergoes dramatic conformational changes during viral capsid maturation and for which x-ray structures, at near atomic resolution, of multiple intermediate and mature capsid states are available. Both amide H/2H exchange and crystallographic comparisons between the pre-expanded Prohead II particles and the expanded Head II of bacteriophage HK97 revealed quaternary interactions that remain fixed throughout maturation and appear to maintain intercapsomer integrity at all quasi- and icosahedral 3-fold axes. These 3-fold staples are formed from Arg and Glu residues and a metal binding site. Mutations of either Arg-347 or Arg-194 or a double mutation of E344Q and E363A resulted in purification of the phage in capsomer form (hexamers and pentamers). Mutants that did assemble had both decreased thermal stability and decreased in vitro expansion rates. Amide H/2H exchange mass spectrometry showed that in the wild type capsid some subunits had a bent “spine” helix (highly exchanging), whereas others were straight (less exchanging). Similar analysis of the never assembled mutant capsomers showed uniform amide exchange in all of these that was higher than that of the straight spine helices (characterized in more mature intermediates), suggesting that the spine helix is somewhat bent prior to capsid assembly. The result further supports a previously proposed mechanism for capsid expansion in which the delta domains of each subunit induce a high energy intermediate conformation, which now appears to include a bent helix during capsomer assembly.The viral capsid, particularly in double-stranded DNA bacteriophage, requires a highly stable macromolecular structure capable of encapsulating genome at near liquid crystalline density. Viral capsids are composed of hundreds to thousands of individual subunits that efficiently assemble into a closed capsid form often of a highly symmetrized icosahedral geometry, avoiding kinetic traps that would result in increased off-pathway assemblies. Recent studies have proposed that capsid assembly is mediated by weak intersubunit interactions that nucleate larger assembly intermediates, resulting in a considerably more stable capsid form due to a favorable geometry with a more constrained network of interactions. Measurements in systems such as cowpea chlorotic mottle virus, hepatitis B virus, and the bacteriophages P22 and HK97 have estimated the association energy of the initial assembly interaction between two subunits at 2–5 kcal/mol, which is seemingly low for a robust assembly product (15). An entropically driven process based on burial of hydrophobic surfaces was considered the driving force for the initial weak interactions with subsequent nucleation and elongation reactions leading to assembly of the full capsid (2, 6). Most complex viruses undergo a staged assembly process involving conformational transitions that occur after the initial assembly of a procapsid (7). The process is known as virion maturation. The interplay between interactions necessary for the initial assembly of capsomers into the procapsid and those that facilitate capsid maturation have been poorly understood, but recent crystal structures of procapsid and mature capsid states of HK97 allowed us to evaluate the structural properties that may facilitate maturation.HK97 is an amenable system for the study of capsid assembly and maturation. Symmetric procapsid particles can be assembled in Escherichia coli with the expression of just two gene products, gp4 (protease) and gp5 (capsid subunit). Maturation can then be followed in vitro by lowering the pH or chemically perturbing the procapsids. Unlike bacteriophages such as P22 that assemble their capsids directly from individual monomeric subunits, HK97 subunits initially assemble into capsomers composed of six-subunit (hexamers) or five-subunit (pentamers) oligomers. Twelve pentamers and 60 hexamers then assemble to form an icosahedral capsid with a triangulation number of 7 laevo, although a portal complex substitutes one of the pentamers during in vivo assembly. Residues 2–103 at the N terminus of the subunit, referred to as the delta domain, is thought to serve the same role as the scaffolding proteins identified for other phage in the assembly process (8). Capsomers then assemble, packaging the protease (gp4), to form the initial procapsid, Prohead I (P-I).1 If the expression is done without the protease or with an inactive (by mutation) protease, this step is reversible (Fig. 1). The equilibrium of this assembly can be controlled in vitro with specific buffers and concentrations that favor either the capsomer or the capsid form (9). Expression with an active protease leads to proteolysis of the delta domains in the assembled P-I state followed by autodigestion of the protease and diffusion of the fragments from the particle. P-I then undergoes subtle structural adjustments, resulting in the Prohead II state composed entirely of the cleaved gp5* subunits (10, 11). At this stage of assembly in vivo, concatameric double-stranded DNA is packaged through a portal complex (composed of gp3 subunits) that fits into a single 5-fold vertex of the capsid. We used an HK97 construct that lacks gp3, so the purified Prohead II capsid is icosahedrally symmetric and cannot package DNA. Purified P-II can be matured in vitro using low pH and other chemical perturbation methods. During maturation, conformational changes in the subunits and their interactions result in large scale expansion and morphological changes in the capsid. The diameter of the capsid shell increases from 540 Å in P-II to 660 Å in Head II (H-II), the fully expanded particle form (12, 13). Intermediate particle forms can be trapped during the expansion and were previously characterized with a variety of biophysical techniques including cryo-EM microscopy (14, 15), x-ray crystallography (12, 13, 16), and small angle x-ray scattering (1618). During the expansion process, self-catalyzed covalent cross-links are formed through isopeptide bond formation between Lys-169 and Asn-356 of different subunits situated on adjacent capsomers (19). The reaction is promoted by Glu-363, which is adjacent to the bonding residues and functions as a proton acceptor. Cross-linking during maturation was previously shown by differential scanning calorimetry (DSC) to greatly enhance the thermal stability of HK97 (5). In addition to covalent bonding, the H-II has significantly more buried surface area than P-II as seen in the highly intercalated intersubunit interactions depicted in the previous 3.44-Å structure of Head II (13, 20). A cross-link-defective mutant, K169Y, stills undergoes particle expansion, reaching the penultimate particle form, termed Head I (H-I), which has nearly identical conformations of hexamer capsomers but less extruded pentamers than H-II (16). H-I was used for all H/2H exchange studies instead of H-II because the cross-links in H-II dramatically affect the efficiency of proteolysis required for the mass spectrometry-based experiment (12, 20).Open in a separate windowFig. 1.HK97 assembly and expansion pathway. The schematic diagram depicts the assembly and expansion of HK97 in an E. coli expression system lacking the portal protein and other machinery required for genome packaging. 42-kDa subunits assemble into hexamer and pentamer capsomers, which then assemble into an initial icosahedral procapsid shell, P-I. Proteolytic cleavage of the delta domain of each subunit results in the formation of the metastable intermediate form P-II, which is able to undergo in vitro maturation when perturbed by various chemical agents. WT expansion proceeds through EI, balloon, and ultimately H-II forms, an expansion process that involves covalent cross-linking. K169Y mutant P-II proceeds through EI to the H-I form without any cross-linking occurring. Other than the lack of cross-links, H-I is identical to balloon.It was hypothesized that for highly intercalated mature capsid forms such as that seen in bacteriophage HK97 early procapsid intermediates are necessary for initial positioning of subunits before conformational changes can facilitate a protein architecture with increased stability. We recently showed with amide H/2H exchange and crystallographic comparisons between the pre-expanded P-II particles and the mature H-II that maturation is probably guided by tertiary structure twisting and secondary structure changes around a fixed set of intercapsomer interactions that surround all quasi- and icosahedral 3-fold axes in the capsid shell (12). The major interactions that appear to facilitate these “3-fold staples” include two sets of salt bridges and a putative metal binding site (Fig. 2). The salt bridge interactions are between residues Glu-344 and Arg-194 and between residues Glu-363 and Arg-347. Glutamate 363 serves dual roles as it is involved in both a salt bridge with Arg-347 and serves as a proton acceptor that catalyzes the isopeptide bond formation (21). The metal binding site is formed by 3-fold related glutamates at position 348 interacting with a sphere of electron density at high σ level in the P-II crystal structure (12). Although comparable density for metal ions is not present at the equivalent position in crystal structures of the late intermediates, the positions of the glutamates are nearly identical, indicating a stable interaction with some mechanism for neutralizing the negative charge repulsion. In contrast to the near identical conformations of the residues at the 3-fold interface, the rest of the subunit was shown to undergo a large scale twisting motion, causing hinging in all three P-domain β-strands (see Fig. 8A for domain nomenclature). These data imply that interactions at the 3-fold interface may be crucial in assembling the capsid from individual capsomers as well as providing a fixed point from which subunits bend while maintaining intercapsomer contacts.Open in a separate windowFig. 2.Importance of 3-fold intercapsomer contacts. A, P-II capsid from previously solved 3.65-Å crystal structure rendered in low resolution in chimera. Two hexon subunits (subunits a and f, yellow and green, respectively) and one penton subunit (orange) that form a quasi-3-fold interaction are shown as ribbons. B, zoomed in view of quasi-3-fold interaction between the two hexamer subunits and one pentamer subunit as highlighted in A. The view is from inside the capsid, 180° rotated from the view shown in A. Residues involved in salt bridges as well as a putative metal binding site (Glu-348) are labeled accordingly. C, table identifying various mutations made to perturb 3-fold contacts. The phenotypes following protein expression are identified. Mutants are distinguished as to whether they were purified as capsids or capsomers (hexamers and pentamers) following protein expression. Data for the Glu-363 mutants are from Dierkes et al. (21).Open in a separate windowFig. 8.Solvent accessibility of R347N capsomer spine helix. A, subunit C of Prohead II is shown with the major domains labeled. Residues 206–216 of the spine helix are colored orange. B, mass envelopes for P-II and H-I particle forms as well as the R347N capsomers following 5 min of exchange. The top spectrum is non-deuterated P-II. C, H/2H exchange results of the residues colored orange are plotted for the R347N capsomers (orange curve) and compared with the solvent accessibility curves for the same fragment in the P-II capsid state, EI, and the nearly mature H-I capsid form. D, the solvent accessibility of the same spine helix fragment is shown for both the R347N capsomers and WT capsomers that were disassembled from the P-I state.Here we confirmed this role for the 3-fold interactions by mutagenesis of relevant residues and characterized the resulting assembly products, thermal stabilities, and maturation kinetics. Some of the mutants did not assemble into particles following the formation of capsomers (e.g. R347N). Capsomers were then purified, and the amide exchange of the spine helices was analyzed with H/2H exchange coupled to mass spectrometry (2224). Previous data illustrated a direct correlation between increased H/2H exchange and an increased bend in the helix conformation (12, 20). Amide exchange of the spine helix in the mutant capsomers was compared with previously characterized particle forms as well as P-I and WT capsomers disassembled from P-I.  相似文献   

11.
12.
Toxoplasma gondii is a human pathogen prevalent worldwide that poses a challenging and unmet need for novel treatment of toxoplasmosis. Using a semi-automated reconstruction algorithm, we reconstructed a genome-scale metabolic model, ToxoNet1. The reconstruction process and flux-balance analysis of the model offer a systematic overview of the metabolic capabilities of this parasite. Using ToxoNet1 we have identified significant gaps in the current knowledge of Toxoplasma metabolic pathways and have clarified its minimal nutritional requirements for replication. By probing the model via metabolic tasks, we have further defined sets of alternative precursors necessary for parasite growth. Within a human host cell environment, ToxoNet1 predicts a minimal set of 53 enzyme-coding genes and 76 reactions to be essential for parasite replication. Double-gene-essentiality analysis identified 20 pairs of genes for which simultaneous deletion is deleterious. To validate several predictions of ToxoNet1 we have performed experimental analyses of cytosolic acetyl-CoA biosynthesis. ATP-citrate lyase and acetyl-CoA synthase were localised and their corresponding genes disrupted, establishing that each of these enzymes is dispensable for the growth of T. gondii, however together they make a synthetic lethal pair.  相似文献   

13.
14.

The surface plasmon resonance (SPR)-induced local field effect in Al-Au-Ag trimetallic three-layered nanoshells has been studied theoretically. Because of having three kinds of metal, three plasmonic bands have been observed in the absorption spectra and the local electric field factor spectra. The local electric field enhancement and the corresponding resonance wavelength for different plasmon coupling modes and spatial positions of the Al-Au-Ag nanoshells with various geometry dimensions are investigated to find the maximum local electric field enhancement. The calculation results indicate that the giant local electric field enhancement could be stimulated by the plasmon coupling in the middle Au shell or the outer Ag shell and could be optimized by increasing the Ag shell thickness and decreasing the Au shell thickness. What is more, the local electric field enhancement also nonmonotonously depends on the dielectric constant of the environment; the local electric field intensity will be weakened when the surrounding dielectric constant is too small or too large.

  相似文献   

15.
Thermostable proteins are advantageous in industrial applications, as pharmaceuticals or biosensors, and as templates for directed evolution. As protein-design methodologies improve, bioengineers are able to design proteins to perform a desired function. Although many rationally designed proteins end up being thermostable, how to intentionally design de novo, thermostable proteins is less clear. UVF is a de novo-designed protein based on the backbone structure of the Engrailed homeodomain (EnHD) and is highly thermostable (Tm > 99°C vs. 52°C for EnHD). Although most proteins generally have polar amino acids on their surfaces and hydrophobic amino acids buried in their cores, protein engineers followed this rule exactly when designing UVF. To investigate the contributions of the fully hydrophobic core versus the fully polar surface to UVF’s thermostability, we built two hybrid, chimeric proteins combining the sets of buried and surface residues from UVF and EnHD. Here, we determined a structural, dynamic, and thermodynamic explanation for UVF’s thermostability by performing 4 μs of all-atom, explicit-solvent molecular dynamics simulations at 25 and 100°C, Tanford-Kirkwood solvent accessibility Monte Carlo electrostatic calculations, and a thermodynamic analysis of 40 temperature runs by the weighted-histogram analysis method of heavy-atom, structure-based models of UVF, EnHD, and both chimeric proteins. Our models showed that UVF was highly dynamic because of its fully hydrophobic core, leading to a smaller loss of entropy upon folding. The charged residues on its surface made favorable electrostatic interactions that contributed enthalpically to its thermostability. In the chimeric proteins, both the hydrophobic core and charged surface independently imparted thermostability.  相似文献   

16.
17.
In a laboratory study, indica and japonica rice (Oryza sativa L.) seeds were exposed to thermal hardening (heating followed by chilling followed by heating; chilling followed by heating followed by chilling; heating followed by chilling or chilling followed by heating). In indica rice, heating followed by chilling followed by heating resulted in decreased mean germination time, time to start germination, electrical conductivity of seed leachates, and time to 50% germination, as well as increased germination index, energy of germination, radicle and plumule length, root length, root/shoot ratio, root fresh and dry weight, radicle and plumule growth rate, and shoot fresh weight. In japonica rice, chilling followed by heating followed by chilling performed better than all other treatments, including control.  相似文献   

18.
Study of protein adsorption to solid surfaces continues to be substantial because of its role in cellular responses to biomaterials, interest in molecular aspects such as conformation and orientation, new methods for making protein repellent surfaces, and new application areas such as nanoparticles and microfluidics. This brief review is based only on very recent articles of particular interest to the authors, who each have worked in this area for some time. Simulations of protein interactions with surfaces and protein repellent surfaces are the only subtopics reviewed here.  相似文献   

19.
In a laboratory study, indica and japonica rice (Oryza sativa L.) seeds were exposed to thermal hardening (heating followed by chilling followed by heating; chilling followed by heating followed by chilling; heating followed by chilling or chilling followed by heating). In indica rice, heating followed by chilling followed by heating resulted in decreased mean germination time, time to start germination, electrical conductivity of seed leachates, and time to 50% germination, as well as increased germination index, energy of germination, radicle and plumule length, root length, root/shoot ratio, root fresh and dry weight, radicle and plumule growth rate, and shoot fresh weight. In japonica rice, chilling followed by heating followed by chilling performed better than all other treatments, including control.  相似文献   

20.
The success rate of reconstructing the Anterior Cruciate Ligament (ACL) with prosthetic ligaments is currently low both in humans and animals. The stress distribution in prosthetic ligaments that causes failure is very complex and not yet understood. Therefore, we have begun to develop a Finite Element Model of a prosthetic ACL. Here we describe the normal and contact stresses in Dacron(TM) yarn (a multi-fibrillar structure) using input data based on experimental measurements of the load and strain of six designed yarns. The results show that the normal and contact stresses in the fibres of the ACL yarn are directly proportional to the yarn strains. Increasing the twisting length (transverse deformation) of the yarn increases the normal stress in the fibres and the yarn modulus, but decreases the contact stresses between the fibres. The structural properties of a yarn are dependent on the specific arrangement of various filament types. Increasing the distance between the longitudinal (symmetry) axes of the filaments and the axis of symmetry of the yarn decreases the stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号