首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peripheral nerve and vascular patterns are congruent in the adult vertebrate, but this has been disputed in vertebrate embryos. The most detailed of these studies have used the avian forelimb as a model system, yet neurovascular anatomical relationships and critical vascular remodeling events remain inadequately characterized in this model. To address this, we have used a combination of intravascular marker injection, multilabel fluorescent stereomicroscopy, and confocal microscopy to analyze the spatiotemporal relationships between peripheral nerves and blood vessels in the forelimb of 818 quail embryos from E2 (HH13) to E15 (HH41). We find that the neurovascular anatomical relationships established during development are highly stereotypic and congruent. Blood vessels typically arise before their corresponding nerves, but there are several critical exceptions to this rule. The vascular pattern is extensively remodeled from the earliest stage examined (E2; HH13), whereas the peripheral nerves, the first of which enter the forelimb at E3.5-E4 (HH21-HH24), have a progressively unfolding pattern that, once formed, remains essentially unchanged. The adult neurovascular pattern is not established until E8 (HH34). Peripheral nerves are always found to track close and parallel to the vasculature. As they track distally, peripheral nerves always lie on the side of the vasculature away from the center of the forelimb. Neurovascular patterns have a hierarchy of congruence that is highest in the dorsoventral plane, followed by the anteroposterior, and lastly the proximodistal planes.  相似文献   

2.
The location and distribution of neural crest-derived Schwann cells during development of the peripheral nerves of chick forelimbs were examined using chick-quail chimeras. Neural crest cells were labeled by transplantation of the dorsal part of the neural tube from a quail donor to a chick host at levels of the neural tube destined to give rise to brachial innervation. The ventral roots, spinal nerves, and peripheral nerves innervating the chick forelimb were examined for the presence of quail-derived neural crest cells at several stages of embryonic development. These quail cells are likely to be Schwann cells or their precursors. Quail-derived Schwann cells were present in ventral roots and spinal nerves, and were distributed along previously described neural crest migratory pathways or along the peripheral nerve fibers at all stages of development examined. During early stages of wing innervation, quail-derived Schwann cells were not evenly distributed, but were concentrated in the ventral root and at the brachial plexus. The density of neural crest-derived Schwann cells decreased distal to the plexus, and no Schwann cells were ever seen in advance of the growing nerve front. When the characteristic peripheral nerve branching pattern was first formed, Schwann cells were clustered where muscle nerves diverged from common nerve trunks. In still older embryos, neural crest-derived Schwann cells were evenly distributed along the length of the peripheral nerves from the ventral root to the distal nerve terminations within the musculature of the forelimb. These observations indicate that Schwann cells accompany axons into the developing limb, but they do not appear to lead or direct axons to their targets. The transient clustering of neural crest-derived Schwann cells in the ventral root and at places where axon trajectories diverge from one another may reflect a response to some environmental feature within these regions.  相似文献   

3.
To understand how blood vessels form to establish the intricate network during vertebrate development, it is helpful if one can visualize the vasculature in embryos. We here describe a novel labeling method using highlighter ink, easily obtained in stationery stores with a low cost, to visualize embryo‐wide vasculatures in avian and mice. We tested 50 different highlighters for fluorescent microscopy with filter sets equipped in a standard fluorescent microscope. The yellow and violet inks yielded fluorescent signals specifically detected by the filters used for green fluorescent protein (GFP) and red fluorescent protein (RFP) detections, respectively. When the ink solution was infused into chicken/quail and mouse embryos, vasculatures including large vessels and capillaries were labeled both in living and fixed embryos. Ink‐infused embryos were further subjected to histological sections, and double stained with antibodies including QH‐1 (quail), α smooth muscle actin (αSMA), and PECAM‐1 (mouse), revealing that the endothelial cells were specifically labeled by the infused highlighter ink. Highlighter‐labeled signals were detected with a resolution comparable to or higher than signals of fluorescein isothiocyanate (FITC)‐lectin and Rhodamine‐dextran, conventionally used for angiography. Furthermore, macroconfocal microscopic analyses with ink‐infused embryos visualized fine vascular structures of both embryo proper and extra‐embryonic plexus in a Z‐stack image of 2400 μm thick with a markedly high resolution. Together, the low cost highlighter ink serves as an alternative reagent useful for visualization of blood vessels in developing avian and mouse embryos and possibly in other animals.  相似文献   

4.
Peripheral nerves and blood vessels have similar patterns in quail forelimb development. Usually, nerves extend adjacent to existing blood vessels, but in a few cases, vessels follow nerves. Nerves have been proposed to follow vascular smooth muscle, endothelium, or their basal laminae. Focusing on the major axial blood vessels and nerves, we found that when nerves grow into forelimbs at E3.5-E5, vascular smooth muscle was not detectable by smooth muscle actin immunoreactivity. Additionally, transmission electron microscopy at E5.5 confirmed that early blood vessels lacked smooth muscle and showed that the endothelial cell layer lacks a basal lamina, and we did not observe physical contact between peripheral nerves and these endothelial cells. To test more generally whether lack of nerves affected blood vessel patterns, forelimb-level neural tube ablations were performed at E2 to produce aneural limbs; these had completely normal vascular patterns up to at least E10. To test more generally whether vascular perturbation affected nerve patterns, VEGF(165), VEGF(121), Ang-1, and soluble Flt-1/Fc proteins singly and in combination were focally introduced via beads implanted into E4.5 forelimbs. These produced significant alterations to the vascular patterns, which included the formation of neo-vessels and the creation of ectopic avascular spaces at E6, but in both under- and overvascularized forelimbs, the peripheral nerve pattern was normal. The spatial distribution of semaphorin3A protein immunoreactivity was consistent with a negative regulation of neural and/or vascular patterning. Semaphorin3A bead implantations into E4.5 forelimbs caused failure of nerves and blood vessels to form and to deviate away from the bead. Conversely, semaphorin3A antibody bead implantation was associated with a local increase in capillary formation. Furthermore, neural tube electroporation at E2 with a construct for the soluble form of neuropilin-1 caused vascular malformations and hemorrhage as well as altered nerve trajectories and peripheral nerve defasciculation at E5-E6. These results suggest that neurovascular congruency does not arise from interdependence between peripheral nerves and blood vessels, but supports the hypothesis that it arises by a shared patterning mechanism that utilizes semaphorin3A.  相似文献   

5.
Quail-chick chimeras have been used extensively in the field of developmental biology. To detect quail cells more easily and to detect cellular processes of quail cells in quail-chick chimeras, we generated four monoclonal antibodies (MAb) specific to some quail tissues. MAb QCR1 recognizes blood vessels, blood cells, and cartilage cells, MAb QB1 recognizes quail blood vessels and blood cells, and MAb QB2 recognizes quail blood vessels, blood cells, and mesenchymal tissues. These antibodies bound to those tissues in 3-9-day quail embryos and did not bind to any tissues of 3-9-day chick embryos. MAb QSC1 is specific to the ventral half of spinal cord and thymus in 9-day quail embryo. No tissue in 9-day chick embryo reacted with this MAb. This antibody binds transiently to a small number of brain vesicle cells in developing chick embryo as well as in quail embryo. A preliminary application of two of these MAb, QCR1 and QSC1, on quail-chick chimeras of neural tube and somites is reported here.  相似文献   

6.
Primordial germ cells (PGCs), collected from the blood of 2-day-old chick embryos, were concentrated by Ficoll density centrifugation. The blood contained 0.048% PGCs and the concentrated fraction contained 3.9% PGCs in blood cells. The PGCs were picked up with a fine glass pipette, and one hundred were then injected into the terminal sinuses of 2-day-old Japanese quail embryos (24 somites); bubbles were then inserted to prevent haemorrhage. The embryos were further incubated at 38 degrees C for 24 h, and then fixed. Serial sections were stained with the periodic acid-Schiff reagent (PAS) to demonstrate chicken PGCs and with Feulgen stain to identify quail cells. On the basis of the differences in staining properties, 63.6 +/- 5.3 chick PGCs were detected in the quail embryo in the area where the gonads develop. Furthermore, 39.3 +/- 4.5 chick PGCs were incorporated into the quail germinal epithelium within 24 h of the injection. A similar percentage of the host (quail) PGCs had also migrated to the germinal epithelium at the same stage of development. This technique for obtaining germ-line chimaeras will facilitate research on avian germ-line differentiation.  相似文献   

7.
We are using a monoclonal antibody, QH-1, as a label for angioblasts in quail embryos to study vascular development. Our previous experiments showed that major embryonic blood vessels, such as the dorsal aortae and posterior cardinal veins, develop from angioblasts of mesodermal origin that appear in the body of the embryo proper (Coffin and Poole: Development, 102:735-748, '88). We theorized that there are two separate processes for blood vessel development that occur in quail embryos. One mechanism termed "vasculogenesis" forms blood vessels in place by the aggregation of angioblasts into a cord. The other mechanism, termed "angiogenesis," is the formation of new vessels by sprouting of capillaries from existing vessels. Here we report the results of microsurgical transplantation experiments designed to determine the extent of cell migration taking place during blood vessel formation. Comparison of the chimeras to normal embryos suggests that the vascular pattern develops, in part, from the normally restricted points of entry of angioblasts into the head from the ventral and dorsal aortae. Transplantations of quail mesoderm (1-15 somite stage) into the head of 5-15 somite chick hosts resulted in extensive sprouting and in migration of single and small groups of angioblasts away from the graft sites. Transplantations into the trunk resulted in incorporation of the graft into the normal vascular pattern of the host. Lateral plate mesoderm was incorporated into the dorsal aortae and individual sprouts grew between somites and along the neural tube to contribute to the intersomitic and vertebral arteries, respectively.  相似文献   

8.
In present study, chicken primordial germ cells (PGCs) were transferred into quail embryos to investigate the development of these germ cells in quail ovary. Briefly, 2 microl of chicken embryonic blood (stage 14) or about 100 purified circulating PGCs were transferred into quail embryo. Contribution of chicken PGCs were detected in gonads of chimeric quail embryos (stage 28) by immunocytochemical staining of cell surface antigen SSEA-1, and by in situ hybridization (ISH) with female chicken specific DNA probe. As a result, 52.0+/-43.2 (n=18) and 42.7+/-27.3 (n=17) chicken PGCs were found in the gonads of chimeric quail embryo that was injected with chicken embryonic blood (stage 14) and about 100 purified circulating PGCs, respectively. Furthermore, the ovaries of 81.8% (9/11) 12 days post incubation (dpi) chimeric quail embryos were observed with a mean of 457.6+/-237.1 female chicken PGCs-derived oogonia scattered in ovarian cortex area. In 9 out of 12 newly hatched and one week old chimeric quail chicks, on average of 2883.0+/-1924.1 primary oocytes and 3 follicles derived from chicken PGCs were found, respectively. The present results suggest that chicken female PGCs are able to migrate, colonize, proliferate and differentiate into oogonia, primary oocytes in chimeric quail ovary.  相似文献   

9.
The formation and perfusion of developing renal blood vessels (apart from glomeruli) are greatly understudied. As vasculature develops via angiogenesis (which is the branching off of major vessels) and vasculogenesis (de novo vessel formation), perfusion mapping techniques such as resin casts, in vivo ultrasound imaging, and micro-dissection have been limited in demonstrating the intimate relationships between these two processes and developing renal structures within the embryo. Here, we describe the procedure of in utero intra-cardiac ultrasound-guided FITC-labeled tomato lectin microinjections on mouse embryos to gauge the ontogeny of renal perfusion. Tomato lectin (TL) was perfused throughout the embryo and kidneys harvested. Tissues were co-stained for various kidney structures including: nephron progenitors, nephron structures, ureteric epithelium, and vasculature. Starting at E13.5 large caliber vessels were perfused, however peripheral vessels remained unperfused. By E15.5 and E17.5, small peripheral vessels as well as glomeruli started to become perfused. This experimental technique is critical for studying the role of vasculature and blood flow during embryonic development.  相似文献   

10.
The technique of back-transplantation was used to investigate the developmental potential of neural crest-derived cells that have migrated to and colonized the avian bowel. Segments of quail bowel (removed at E4) were grafted between the somites and neural tube of younger (E2) chick host embryos. Grafts were placed at a truncal level, adjacent to somites 14-24. Initial experiments, done in vitro, confirmed that crest-derived cells are capable of migrating out of segments of foregut explanted at E4. The foregut, which at E4 has been colonized by cells derived from the vagal crest, served as the donor tissue. Comparative observations were made following grafts of control tissues, which included hindgut, lung primordia, mesonephros and limb bud. Additional experiments were done with chimeric bowel in which only the crest-derived cells were of quail origin. Targets in the host embryos colonized by crest-derived cells from the foregut grafts included the neural tube, spinal roots and ganglia, peripheral nerves, sympathetic ganglia and the adrenals, but not the gut. Donor cells in these target organs were immunostained by the monoclonal antibody, NC-1, indicating that they were crest-derived and developing along neural or glial lineages. Some of the crest-derived cells (NC-1-immunoreactive) that left the bowel and reached sympathetic ganglia, but not peripheral nerves or dorsal root ganglia, co-expressed tyrosine hydroxylase immunoreactivity, a neural characteristic never expressed by crest-derived cells in the avian gut. None of the cells leaving enteric back-grafts produced pigment. Cells of mesodermal origin were also found to leave donor explants and aggregate in dermis and feather germs near the grafts. These observations indicate that crest-derived cells, having previously migrated to the bowel, retain the ability to migrate to distant sites in a younger embryo. The routes taken by these cells appear to reflect, not their previous migratory experience, but the level of the host embryo into which the graft is placed. Some of the population of crest-derived cells that leave the back-transplanted gut remain capable of expressing phenotypes that they do not express within the bowel in situ, but which are appropriate for the site in the host embryo to which they migrate.  相似文献   

11.
The mass of the myocardium and endocardium of the vertebrate heart derive from the heart-forming fields of the lateral plate mesoderm. Further components of the mature heart such as the epicardium, cardiac interstitium and coronary blood vessels originate from a primarily extracardiac progenitor cell population: the proepicardium (PE). The coronary blood vessels are accompanied by lymph vessels, suggesting a common origin of the two vessel types. However, the origin of cardiac lymphatics has not been studied yet. We have grafted PE of HH-stage 17 (day 3) quail embryos hetero- and homotopically into chick embryos, which were re-incubated until day 15. Double staining with the quail endothelial cell (EC) marker QH1 and the lymphendothelial marker Prox1 shows that the PE of avian embryos delivers hemangioblasts but not lymphangioblasts. We have never observed quail ECs in lymphatics of the chick host. However, one exception was a large lymphatic trunk at the base of the chick heart, indicating a lympho-venous anastomosis and a 'homing' mechanism of venous ECs into the lymphatic trunk. Cardiac lymphatics grow from the base toward the apex of the heart. In murine embryos, we observed a basal to apical gradient of scattered Lyve-1+/CD31+/CD45+ cells in the subepicardium at embryonic day 12.5, indicating a contribution of immigrating lymphangioblasts to the cardiac lymphatic system. Our studies show that coronary blood and lymph vessels are derived from different sources, but grow in close association with each other.  相似文献   

12.
The behavior of quail primordial germ cells (PGC) after injection into chick embryos by the intravascular route was examined. The quail (donor) PGC, taken from the bloodstream of quail embryos (recipient) at stage 13-14, were injected into the vitelline vessels of chick embryos (recipient) at stage 15. In the recipient embryos, the PGC of the quail and the chick were histochemically distinguished by a double-staining technique involving a lectin, from Wistaria floribunda (WFA) and the PAS reaction. One day after injection, quail PGC appeared in the prospective gonadal region of recipient chick embryos, being localized among the recipient chick PGC. This result indicates that a staining technique specific for WFA lectin is useful for identification of quail PGC and that quail PGC can be transferred by a vascular route for the production of germline chimeras.  相似文献   

13.
14.
The US-Russian joint quail embryo project was designed to study the effects of microgravity on development of Japanese quail embryos incubated aboard Mir. For this part of the project, eyes from embryonic days 14 and 16 (E14 and E16) flight embryos were compared with eyes from several groups of ground-based control embryos. Measurements were recorded for eye weights; eye, corneal, and scleral ring diameters; and numbers of bones in scleral ossicle rings. Transparency of E16 corneas was documented, and immunohistochemical staining was performed to observe corneal innervation. In addition, corneal ultrastructure was observed at the electron microscopic level. Except for corneal diameter of E16 flight embryos, compared with that of one of the sets of controls, results reported here indicate that eye development occurred normally in microgravity. Fixation by cracking the shell and placing the egg in paraformaldehyde solution did not adequately preserve corneal nerves or cellular ultrastructure.  相似文献   

15.
Peanut agglutinin (PNA) receptors are expressed in the caudal halves of sclerotomes in chick embryos after 3 days of incubation (stages 19–20 of Hamburger & Hamilton). The neural crest cells forming dorsal root ganglia (DRG) and motor nerves appear to avoid PNA positive regions and concentrate into rostral halves of sclerotomes. To investigate the role of PNA receptors in gangliogenesis and nerve growth, we examined PNA binding ability in quail sclerotomes and in chick-quail chimeric embryos made by transplanting quail somites to chick embryos, comparing the development of DRG, motor nerves and sclerotomes. PNA did not bind to any part of the somites of 4.5-day quail embryos, although dorsal root ganglia and motor nerves appeared only in the rostral halves of sclerotomes as in chick embryos. Moreover, in spite of no PNA binding ability of the transplanted quail somite in 4.5-day chick-quail chimeric embryos, DRG and motor nerves derived from chick tissues appeared only in the rostral halves of the sclerotomes derived from these somites. Thus, both quail and chick neural crest cells and motor nerves recognized the difference between the rostral and caudal halves of sclerotomes of quail embryos in the absence of PNA binding ability, indicating that PNA binding site on somite cells does not support the selective neural crest migration and nerve growth.  相似文献   

16.
Neural crest cell migration was studied in trunks of quail and chick embryos using HNK-1 and L2 antibodies. At the intersegmental cleft, labeled crest cells were associated with the rostral wall of the somite rather than blood vessels. Migration into and through the rostral part of the sclerotomes was more rapid (40-70 microns/hr; quail) and the onset of localization was earlier (after 13-16 hr; quail) than previously supposed. Crest cells here were initially mono- to multipolar, scattered, and inconsistently oriented and formed numerous close (about 20 nm) homo- and heterotypic cell-cell contacts. In vitro models suggested that significant numbers of crest cells, however, could be unlabeled at this early phase. Somitic properties covarying with the hemisegmental pattern of crest cell immigration were investigated. Laminin distribution, although asymmetric in the somites, was not closely related to that of crest cells. Tenascin distribution matched that of crest cells, but only at the localization stage. Earlier, maximal tenascin expression occurred in the somite's caudal wall, a region avoided by crest cells. Chondroitin 6-sulfate proteoglycan expression was elevated in the caudal somite-half at the localization phase and also, at lumbar levels, at the immigration stage. This is consistent with tenascin and proteoglycan having a negative role in crest cell migration. The rostral somite-half was also labeled by HNK-1 and L2, but only in quails. This was associated with the cell surface, was transient, was stable to mild proteolysis, and was labile to cryoprocessing and lipophilic solvents. The spatial and temporal congruence with crest migration suggests that the HNK/L2 adhesion-related carbohydrate epitope on the somites indicates a molecule (possibly glycolipid) which acts via heterotypic cell-cell contacts to provide one cue in the patterned distribution of crest cells in the somites.  相似文献   

17.
Developmental fates of cells emigrating from the primitive streak were traced by a fluorescent dye Dil both in chick and in quail embryos from the fully grown streak stage to 12-somite stage, focusing on the development of mesoderm and especially on the timing of ingression of each level of somitic mesoderm. The fate maps of the chick and quail streak were alike, although the chick streak was longer at all stages examined. The anterior part of the primitive streak predominantly produced somites. The thoracic and the lumbar somites were shown to begin to ingress at the 5 somite-stage and 10 somite-stage in a chick embryo, and 6 somite-stage and 9 somite-stage in a quail embryo, respectively. The posterior part of the streak served mainly as the origin of more lateral or extra embryonic mesoderm. As development proceeded, the fate of the posterior part of the streak changed from the lateral plate mesoderm to the tail bud mesoderm and then to extra embryonic, allantois mesoderm. The fate map of the primitive streak in chick and quail embryo presented here will serve as basic data for studies on mesoderm development with embryo manipulation, especially for transplantation experiments between chick and quail embryos.  相似文献   

18.
Vascular development requires the assembly of precursor cells into blood vessels, but how embryonic vessels are assembled is not well understood. To determine how vascular cells migrate and assemble into vessels of the trunk and limb, marked somite-derived angioblasts were followed in developing embryos. Injection of avian somites with the cell-tracker DiI showed that somite-derived angioblasts in unperturbed embryos migrated extensively and contributed to trunk and limb vessels. Mouse-avian chimeras with mouse presomitic mesoderm grafts had graft-derived endothelial cells in blood vessels at significant distances from the graft, indicating that mouse angioblasts migrated extensively in avian hosts. Mouse graft-derived endothelial cells were consistently found in trunk vessels, such as the perineural vascular plexus, the cardinal vein, and presumptive intersomitic vessels, as well as in vessels of the limb and kidney rudiment. This reproducible pattern of graft colonization suggests that avian vascular patterning cues for trunk and limb vessels are recognized by mammalian somitic angioblasts. Mouse-quail chimeras stained with both the quail vascular marker QH1 and the mouse vascular marker PECAM-1 had finely chimeric vessels, with graft-derived mouse cells interdigitated with quail vascular cells in most vascular beds colonized by graft cells. Thus, diverse trunk and limb blood vessels have endothelial cells that developed from migratory somitic angioblasts, and assembly of these vessels is likely to have a large vasculogenic component.  相似文献   

19.
By using the quail-chicken chimera technique, we studied the reactivity and the eventual developmental or inducing capacities of the avian caudal marginal zone (in comparison with Rauber's sickle), when associated in vitro with different avian blastoderm components. If a fragment of quail sickle endoblast is placed on the caudal marginal zone of a whole unincubated chicken blastoderm, then a secondary miniature embryo will develop in this caudal marginal zone. The primitive streak and accompanying neural plate of the secondary embryo are directed peripherally into the caudal germ wall, away from Rauber's sickle. Thus, the 'mirror image development' indicates that the upper layer of the caudal marginal zone can react in the same way as the upper layer of the area centralis, because of the presence of sickle endoblast. A quail Rauber's sickle fragment placed on an isolated anti-sickle region always induces a primitive streak directed centrally. After prolonged culture, blood vessels and associated coelomic vesicles are formed. By contrast if a quail caudal marginal zone is placed on an isolated chicken anti-sickle region, the primitive streak, blood vessels and coelomic vesicles do not form. Thus, in contrast to the inducing effect of Rauber's sickle, the caudal marginal zone has no inducing effect by itself, even in the absence of the dominating effect of Rauber's sickle.  相似文献   

20.

Background

One of the least understood and most central questions confronting biologists is how initially simple clusters or sheet-like cell collectives can assemble into highly complex three-dimensional functional tissues and organs. Due to the limits of oxygen diffusion, blood vessels are an essential and ubiquitous presence in all amniote tissues and organs. Vasculogenesis, the de novo self-assembly of endothelial cell (EC) precursors into endothelial tubes, is the first step in blood vessel formation [1]. Static imaging and in vitro models are wholly inadequate to capture many aspects of vascular pattern formation in vivo, because vasculogenesis involves dynamic changes of the endothelial cells and of the forming blood vessels, in an embryo that is changing size and shape.

Methodology/Principal Findings

We have generated Tie1 transgenic quail lines Tg(tie1:H2B-eYFP) that express H2B-eYFP in all of their endothelial cells which permit investigations into early embryonic vascular morphogenesis with unprecedented clarity and insight. By combining the power of molecular genetics with the elegance of dynamic imaging, we follow the precise patterning of endothelial cells in space and time. We show that during vasculogenesis within the vascular plexus, ECs move independently to form the rudiments of blood vessels, all while collectively moving with gastrulating tissues that flow toward the embryo midline. The aortae are a composite of somatic derived ECs forming its dorsal regions and the splanchnic derived ECs forming its ventral region. The ECs in the dorsal regions of the forming aortae exhibit variable mediolateral motions as they move rostrally; those in more ventral regions show significant lateral-to-medial movement as they course rostrally.

Conclusions/Significance

The present results offer a powerful approach to the major challenge of studying the relative role(s) of the mechanical, molecular, and cellular mechanisms of vascular development. In past studies, the advantages of the molecular genetic tools available in mouse were counterbalanced by the limited experimental accessibility needed for imaging and perturbation studies. Avian embryos provide the needed accessibility, but few genetic resources. The creation of transgenic quail with labeled endothelia builds upon the important roles that avian embryos have played in previous studies of vascular development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号