首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the comet assay, we showed that nickel chloride at 250-1000 microM induced DNA damage in human lymphocytes, measured as the change in comet tail moment, which increased with nickel concentration up to 500 microM and then decreased. Observed increase might follow from the induction of strand breaks or/and alkali-labile sites (ALS) by nickel, whereas decrease from its induction of DNA-DNA and/or DNA-protein cross-links. Proteinase K caused an increase in the tail moment, suggesting that nickel chloride at 1000 microM might cross-link DNA with nuclear proteins. Lymphocytes exposed to NiCl(2) and treated with enzymes recognizing oxidized and alkylated bases: endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), displayed greater extent of DNA damage than those not treated with these enzymes, indicating the induction of oxidized and alkylated bases by nickel. The incubation of lymphocytes with spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by nickel. The pre-treatment with Vitamin C at 10 microM and Vitamin E at 25 microM decreased the tail moment of the cells exposed to NiCl(2) at the concentrations of the metal causing strand breaks or/and ALS. The results obtained suggest that free radicals may be involved in the formation of strand breaks or/and ALS in DNA as well as DNA-protein cross-links induced by NiCl(2). Nickel chloride can also alkylate DNA bases. Our results support thesis on multiple, free radicals-based genotoxicity pathways of nickel.  相似文献   

2.
Idarubicin is an anthracycline antibiotic used in cancer therapy. Mitoxantrone is an anthracycline analog with presumed better antineoplastic activity and lesser toxicity. Using the alkaline comet assaywe showed that the drugs at 0.01-10 microM induced DNA damage in normal human lymphocytes. The effect induced by idarubicin was more pronounced than by mitoxantrone (P < 0.001). The cells treated with mitoxantrone at 1 microM were able to repair damage to their DNA within a 30-min incubation, whereas the lymphocytes exposed to idarubicin needed 180 min. Since anthracyclines are known to produce free radicals, we checked whether reactive oxygen species might be involved in the observed DNA damage. Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by idarubicin, but did not affect the extent evoked by mitoxantrone. Lymphocytes exposed to the drugs and treated with endonuclease III or formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing and nicking oxidized bases, displayed a higher level of DNA damage than the untreated ones. 3-Methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing and nicking mainly methylated bases in DNA, increased the extent of DNA damage caused by idarubicin, but not that induced by mitoxantrone. Our results indicate that the induction of secondary malignancies should be taken into account as side effects of the two drugs. Direct strand breaks, oxidation and methylation of the DNA bases can underlie the DNA-damaging effect of idarubicin, whereas mitoxantrone can induce strand breaks and modification of the bases, including oxidation. The observed in normal lymphocytes much lesser genotoxicity of mitoxantrone compared to idarubicin should be taken into account in planning chemotherapeutic strategies.  相似文献   

3.
Streptozotocin (STZ) is an antibiotic which can be used to induce diabetes in experimental animals in order to have an insight into pathogenesis of this disease. To use STZ as a diabetogenic substance, its molecular mode of action should be elucidated. Using the alkaline comet assay, we showed that STZ at concentrations in the range 0.01-100 micromol/L induced DNA damage in normal human lymphocytes and HeLa cancer cells in a dose-dependent manner. Lymphocytes were able to remove damage to their DNA within a 30-min repair incubation, whereas HeLa cells completed the repair in 60 min. Vitamins C and E at 10 and 50 micromol/L diminished the extent of DNA damage induced by 50 micromol/L STZ. Pretreatment of the lymphocytes with the nitrone spin trap, alpha-(4-pyridil-1-oxide)-N-tert-butylnitrone (POBN) or ebselen, which mimics glutathione peroxidase, or pyrrolidine dithiocarbamate (PDTC) reduced the extent of DNA damage evoked by STZ. The cells exposed to STZ and treated with endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. These results suggest that free radicals may be involved in the formation of DNA lesions induced by streptozotocin. The drug can also alkylate DNA bases. This broad range of DNA damage induced by STZ indicates that the drug may seriously affect genomic stability in normal and pathological cells.  相似文献   

4.
Idarubicin is an anthracycline anticancer drug used in haematological malignancies. The main side effect of idarubicin is free-radicals based cardiotoxicity. Using the comet assay we showed that the drug at concentrations from the range 0.001 to 10 microM induced DNA damage in normal human lymphocytes, measured as the increase in percentage of DNA in the tail (% tail DNA). The effect was dose-dependent. Treated cells were able to recover within a 120-min incubation. Recognised cell protector, amifostine at 14 mM decreased the mean % tail DNA of the cells exposed to idarubicin at all tested concentrations of the drug. So did vitamin C at 10 microM, but vitamin E (alpha-tocopherol) at 50 microM increased the % tail DNA. Lymphocytes exposed to idarubicin and treated with endonuclease III, formamidopyrimidine-DNA glycosylase and 3-methyladenine-DNA glycosylase II, enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. Pretreatment of lymphocytes with nitrone spin traps, N-tert-butyl-alpha-phenylnitrone and alpha-(4-pyridil-1-oxide)-N-tert-butylnitrone decreased the extent of DNA damage evoked by idarubicin. To discuss the influence of vitamins and amifostine in cancer cells we used also murine pro-B lymphoid BaF3 transformed with BCR/ABL oncogene. These cells can be treated as model cells of human acute myelogenous leukemia. The response of these cells to vitamin E was quantitatively the same as human lymphocytes. However, vitamin C did not exert any effect on DNA damage and amifostine, in spite to normal lymphocytes, potentiated this effect. The results obtained suggest that reactive oxygen species, including free radicals, may be involved in the formation of DNA lesions induced by idarubicin. The drug can also methylate DNA bases. Our results indicate that not only cardiotoxicity but also genotoxicity and in consequence induction of secondary malignancies should be taken into account as diverse side effects of idarubicin. Amifostine may potentate DNA-damage effect of idarubicin in cancer cells and decrease this effect in normal cells. Vitamin C can be considered as protective agents against DNA damage in normal cells in persons receiving idarubicin-based chemotherapy, but the use of vitamin E cannot be recommended and at least needs further research.  相似文献   

5.
Amsacrine is an acridine derivative drug applied in haematological malignancies. It targets topoisomerase II enhancing the formation of a cleavable DNA-enzyme complex and leading to DNA fragmentation in dividing cancer cells. Little is known about other modes of the interaction of amsacrine with DNA, by which it could affect also normal cells. Using the alkaline comet assay, we showed that amsacrine at concentrations from the range 0.01 to 10 microM induced DNA damage in normal human lymphocytes, human promyelocytic leukemia HL-60 cells lacking the p53 gene and murine pro-B lymphoid cells BaF3 expressing BCR/ABL oncogene measured as the increase in percentage tail DNA. The effect was dose-dependent. Treated cells were able to recover within a 120-min incubation. Amifostine at 14 mM decreased the level of DNA damage in normal lymphocytes, had no effect on the HL-60 cells and potentiated the DNA-damaging effect of the drug in BCR/ABL-transformed cells. Vitamin C at 10 and 50 microM diminished the extent of DNA damage in normal lymphocytes, but had no effect in cancer cells. Pre-treatment of the cells with the nitrone spin trap, N-tert-butyl-alpha-phenylnitrone or ebselen, which mimics glutathione peroxidase, reduced the extent of DNA damage evoked by amsacrine in all types of cells. The cells exposed to amsacrine and treated with endonuclease III and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized and alkylated bases, respectively, displayed greater extent of DNA damage than those not treated with these enzymes. The results obtained suggest that free radicals may be involved in the formation of DNA lesions induced by amsacrine. The drug can also methylate DNA bases. Our results indicate that the induction of secondary malignancies should be taken into account as diverse side effects of amsacrine. Amifostine may potentate DNA-damage effect of amsacrine in cancer cells and decrease this effect in normal cells and Vitamin C can be considered as a protective agent against DNA damage in normal cells.  相似文献   

6.
Genotoxicity of acrylamide in human lymphocytes   总被引:8,自引:0,他引:8  
Acrylamide is used in the industry and can be a by-product in a high-temperature food processing. It is reported to interact with DNA, but the mechanism of this interaction is not fully understood. In the present study, we investigated the DNA-damaging potential of acrylamide (ACM) in normal human lymphocytes using the alkaline-, neutral- and 12.1 versions of the comet assay and pulsed-field gel electrophoresis. We also investigated effect of acrylamide on caspase-3 activity as well as its influence on the repair process of hydrogen peroxide-induced DNA damage. Acrylamide at 0.5-50 microM induced mainly alkali-labile sites. This damage was repaired during a 60-min repair incubation. Post-treatment of the damaged DNA with repair enzymes: thymine glycol DNA N-glycosylase (Nth) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases, as well as 3-methyladenine-DNA glycosylase II (Alk A), recognizing alkylated bases, caused an increase in the extent of DNA damage, indicating the induction of oxidative and alkylative DNA base modifications by acrylamide. Pre-treatment of the lymphocytes with N-tert-butyl-alpha-phenylnitrone (PBN), a spin trap, as well as vitamins C and E decreased the DNA-damaging effect of acrylamide, which suggest that free radicals/reactive oxygen species may be involved in this effect. Acrylamide impaired the repair of DNA damaged by hydrogen peroxide and increased the activity of caspase-3, which may indicate its potential to induce apoptosis. Our results suggest that acrylamide may exert a wide spectrum of diverse effects on DNA of normal cells, including mostly DNA base modifications and apoptosis. Acrylamide may also impair DNA repair. Free radicals may underline these effects and some dietary antioxidants can be considered as protective agents against genotoxic action of acrylamide. As normal lymphocytes contain cyp2e1 and P450, engaged in the bioactivation of ACM to glicidamide it is uncertain whether acrylamide causes all of measured effect per se or this is the result of the action of its metabolites.  相似文献   

7.
Imatinib (STI571) is a 2-phenylaminopyrimidine derivative used mostly in the treatment of chronic myeloid leukaemia. It targets the BCR/ABL oncogenic tyrosine kinase, inhibiting its activity. Using the alkaline comet assay we showed that STI571 at concentrations ranging from 0.2 to 2 microM induced DNA damage in human leukemic K562 and BV173 cells expressing the BCR/ABL oncogene, whereas it had no effect in normal human lymphocytes and leukemic CCRF-CEM cells without the expression of BCR/ABL. Imatinib did not induce DNA strand breaks in the direct interaction with DNA as examined by the circular plasmid relaxation assay. Because the extent of DNA damage observed in the neutral and pH 12.1 versions of the comet assay was much lesser than in the alkaline version, we concluded that the drug induced DNA alkali-labile sites rather than strand breaks. K562 cells were unable to repair H(2)O(2)-induced DNA damage during a 120-min incubation, if they had been preincubated with STI571, whereas normal lymphocytes did so within 60 min. Pre-treatment of K562 cells with Vitamins A, C and E reduced the extent of DNA damage evoked by STI571. Similar results brought experiments with the nitrone spin traps POBN and PBN, suggesting that free radicals may be involved in the formation of DNA lesions induced by STI571 in K562 cells. These cells exposed to imatinib and treated with endonuclease III, formamidopyrimidine-DNA glycosylase and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. Therefore, the mechanism of the anti-leukemic action of STI571 may involve not only the inhibition of BCR/ABL, but also DNA damage in the cells expressing this fusion protein. DNA damage induced by STI571 may follow from oxidative and alkylative base modifications.  相似文献   

8.
Lead is present in the natural and occupational environment and is reported to interact with DNA, but the mechanism of this interaction is not fully understood. Using the alkaline comet assay we showed that lead acetate at 1-100 microM induced DNA damage in isolated human lymphocytes measured the change in the comet tail length. At 1 and 10 microM we observed an increase in the tail length, whereas at 100 microM a decrease was seen. The former effect could follow from the induction of DNA strand breaks and/or alkali-labile sites (ALS), the latter from the formation of DNA-DNA and/or DNA-protein cross-links. No difference was observed between tail length for the alkaline and pH 12.1 versions of the assay, which indicates that strand breaks and not ALS are responsible for the tail length increase induced by lead. The neutral version of the test revealed that lead acetate induced DNA double-strand breaks at all concentrations tested. The presence of spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN) did not influence the level of DNA damage induced by lead. Post-treatment of the lead-damaged DNA (at 100 microM treatment concentration) by endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing oxidized DNA bases, as well as 3-methyladenine-DNA glycosylase II, an enzyme recognizing alkylated bases, gave rise to a significant increase in the extent of DNA damage. Proteinase K caused an increase in comet tail length, suggesting that lead acetate might cross-link DNA with nuclear proteins. Vitamin A, E, C, calcium chloride and zinc chloride acted synergistically on DNA damage evoked by lead. The results obtained suggest that lead acetate may induce single-strand breaks (SSB) and double-strand breaks (DSB) in DNA as well as DNA-protein cross-links. The participation of free radicals in DNA-damaging potential of lead is not important and it concerns other reactive species than could be trapped by DMPO or PBN.  相似文献   

9.
DNA base analogs, 2,4,5,6-substituted pyrimidines and 2,6-substituted purines were tested as potential inhibitors of E. coli Fpg protein (formamidopyrimidine -DNA glycosylase). Three of the seventeen compounds tested revealed inhibitory properties. 2-Thioxanthine was the most efficient, inhibiting 50% of 2,6-diamino-4-hydroxy-5N-methyl-formamidopyrimidine (Fapy-7MeG) excision activity at 17.1 microM concentration. The measured K(i) was 4.44 +/- 0.15 microM. Inhibition was observed only when the Fpg protein was first challenged to its substrate followed by the addition of the base analog, suggesting uncompetitive (catalytic) inhibition. For two other compounds, 2-thio- or 2-oxo-4,5,6-substituted pyrimidines, IC(50) was only 343.3 +/- 58.6 and 350 +/- 24.4 microM, respectively. No change of the Fpg glycosylase activity was detected in the presence of Fapy-7MeG, up to 5 microM. We also investigated the effect of DNA structure modified by tryptophan pyrolysate (Trp-P-1) on the activity of base excision repair enzymes: Escherichia coli and human DNA glycosylases of oxidized (Fpg, Nth) and alkylated bases (TagA, AlkA, and ANPG), and for bacterial AP endonuclease (Xth protein). Trp-P-1, which changes the secondary DNA structure into non-B, non-Z most efficiently inhibited excision of alkylated bases by the AlkA glycosylase (IC(50) = 1 microM). The ANPG, TagA, and Fpg proteins were also inhibited although to a lesser extent (IC(50) = 76.5 microM, 96 microM, and 187.5 microM, respectively). Trp-P-1 also inhibited incision of DNA at abasic sites by the beta-lyase activity of the Fpg and Nth proteins, and to a lesser extent by the Xth AP endonuclease. Thus, DNA conformation is critical for excision of damaged bases and incision of abasic sites by DNA repair enzymes.  相似文献   

10.
Amoxicillin is a penicillin derivative belonging to a group of beta-lactam antibiotics used in Helicobacter pylori eradication. Clinical application of amoxicillin is underlined by its antibacterial activity, but little is known about its interaction with DNA of human cells. Using the alkaline comet assay we investigated the genotoxicity of amoxicillin in human peripheral blood lymphocytes as well as in H. pylori-infected and non-infected human gastric mucosa cells. To assess the role of reactive oxygen species in the genotoxicity of amoxicillin we employed a set of antioxidant and free radical scavengers, including Vitamins C and E, melatonin and the nitrone spin trap N-tert-butyl-alpha-phenyl-nitrone (PBN). Amoxicillin-induced DNA damage was completely repaired after 60 min. The vitamins, melatonin and the spin trap decreased the extent of the damage. The cells exposed to amoxicillin and treated with endonuclease III and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized bases displayed greater extent of DNA damage than those not treated with these enzymes. H. pylori non-infected gastric mucosa cells exposed to hydrogen peroxide repaired their DNA in a 60 min incubation, but the infected cells were not able to do so. The action of DNA repair enzymes, the vitamins, melatonin and PBN indicated that amoxicillin-induced oxidative DNA damage. The drug did not induce DNA strand breaks in isolated pUC19 plasmid DNA. Our results suggest that amoxicillin can induce DNA damage in human lymphocytes and gastric mucosa cells and this effect may follow from the production of reactive oxygen species. Cellular activation of the drug is needed to induce DNA damage. Free radical scavengers and antioxidants may be used to assist H. pylori eradication with amoxicillin to protect DNA of the host cells. Our results suggest also that H. pylori infection may alter gastric mucosa cells response to DNA-damaging agents and in this way contribute to initiation/promotion of cancer transformation of these cells induced by external or internal carcinogens.  相似文献   

11.
DNA damage may be associated with type 2 diabetes mellitus (T2DM) and its complications mainly through oxidative stress. Little is known about DNA repair disturbances potentially contributing to the overall extent of DNA damage in T2DM, which, in turn, may be linked with genomic instability resulting in cancer. To assess whether DNA repair may be perturbed in 2DM we determined: (1) the level of endogenous basal DNA damage, this means damage recognized in the alkaline comet assay (DNA strand breaks and alkali labile sites) as well as endogenous oxidative and alkylative DNA damage (2) the sensitivity to DNA-damaging agents hydrogen peroxide and doxorubicin and the efficacy of removing of DNA damage induced by these agents in peripheral blood lymphocytes of T2DM patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair was evaluated by the alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. The levels of basal endogenous and oxidative DNA damage in diabetes patients were higher than in control subjects. There was no difference between the level of alkylative DNA in the patients and the controls. Diabetes patients displayed higher susceptibility to hydrogen peroxide and doxorubicin and decreased efficacy of repairing DNA damage induced by these agents than healthy controls. Our results suggest that type 2 diabetes mellitus may be associated not only with the elevated level of oxidative DNA damage but also with the increased susceptibility to mutagens and the decreased efficacy of DNA repair. These features may contribute to a link between diabetes and cancer and metrics of DNA damage and repair, measured by the comet assay, may be markers of risk of cancer in diabetes.  相似文献   

12.
The present study reports the protective effects of kolaviron, a Garcinia biflavonoid from the seeds of Garcinia kola widely consumed in some West African countries against oxidative damage to molecular targets ex-vivo and in vitro. Treatment with hydrogen peroxide (H2O2) at a concentration of 100 micromol/L increased the levels of DNA strand breaks and oxidized purine (formamidopyrimidine glycosylase (FPG) and pyrimidine (endonuclease III (ENDO III) sites) bases in both human lymphocytes and rat liver cells using alkaline single cell gel electrophoresis (the comet assay). Kolaviron was protective at concentrations between 30-90 micromol/L and decreased H2O2-induced DNA strand breaks and oxidized bases. Neither alpha-tocopherol nor curcumin decreased H2O2-induced DNA damage in this assay. In lymphocytes incubated with Fe3+/GSH, Fe3+ was reduced to Fe2+ by GSH initiating a free radical generating reaction which induced 11.7, 6.3, and 4.9 fold increase respectively in strand breaks, ENDO III and FPG sensitive sites compared with control levels. Deferoxamine (2 mmol/L), an established iron chelator significantly inhibited GSH/Fe3+-induced strand breaks and oxidized base damage. Similarly, kolaviron at 30 and 90 micromol/L significantly attenuated GSH/Fe3+-induced strand breaks as well as base oxidation. Kolaviron (100 mg/kg bw) administered to rats for one week protected rat liver cells against H2O2-induced formation of strand breaks, ENDO III, and FPG sensitive sites, Fe3+/EDTA/ascorbate-induced malondialdehyde formation and protein oxidation using gamma-glutamyl semialdehyde (GGS) and 2-amino-adipic semialdehyde (AAS) as biomarkers of oxidative damage to proteins. We suggest that kolaviron exhibits protective effects against oxidative damage to molecular targets via scavenging of free radicals and iron binding. Kolaviron may therefore be relevant in the chemoprevention of oxidant-induced genotoxicity and possibly human carcinogenesis.  相似文献   

13.
Type 2 diabetes mellitus is associated with elevated level of oxidative stress, which is one of the most important factors responsible for the development of chronic complications of this disease. Moreover, it was shown that diabetic patients had increased level of oxidative DNA damage and decreased effectiveness of DNA repair. These changes may be associated with increased risk of cancer in T2DM patients, since DNA damage and DNA repair play a pivotal role in malignant transformation. It was found that gliclazide, an oral hypoglycemic drug with antioxidant properties, diminished DNA damage induced by free radicals. Therefore, the aim of the present study was to evaluate the in vitro impact of gliclazide on: (i) endogenous basal and oxidative DNA damage, (ii) DNA damage induced by hydrogen peroxide and (iii) the efficacy of DNA repair of such damage. DNA damage and DNA repair in peripheral blood lymphocytes of 30 T2DM patients and 30 non-diabetic individuals were evaluated by alkaline single cell electrophoresis (comet) assay. The extent of oxidative DNA damage was assessed by DNA repair enzymes: endonuclease III and formamidopyrimidine-DNA glycosylase. The endogenous basal and oxidative DNA damages were higher in lymphocytes of T2DM patients compared to non-diabetic subjects and gliclazide decreased the level of such damage. The drug significantly decreased the level of DNA damage induced by hydrogen peroxide in both groups. Gliclazide increased the effectiveness of DNA repair in lymphocytes of T2DM patients (93.4% (with gliclazide) vs 79.9% (without gliclazide); P< or =0.001) and non-diabetic subjects (95.1% (with gliclazide) vs 90.5% (without gliclazide); P< or =0.001). These results suggest that gliclazide may protect against the oxidative stress-related chronic diabetes complications, including cancer, by decreasing the level of DNA damage induced by reactive oxygen species.  相似文献   

14.
Nickel is a toxic and carcinogenic environmental and occupational pollutant and quercetin is a dietary flavonoid that is reported to modulate effects of many mutagens and carcinogens. We investigated the ability of nickel chloride to induce DNA damage in human colonic mucosa cells in the presence of quercetin, using the alkaline comet assay. Nickel chloride (5–250 μmol/L) evoked dose-dependent DNA damage and quercetin at 50 μmol/L decreased the extent of this damage. The cells exposed to nickel chloride progressively removed their DNA damage and the presence of 50 μmol/L quercetin in the repair-incubation medium did not affect the repair kinetics. Cells exposed to nickel and treated with endonuclease III, an enzyme recognizing oxidized bases, displayed a greater extent of DNA damage than those not treated with the enzyme. Quercetin did not exert a significant effect on the production of oxidized bases by nickel. Pretreatment of the cells with a nitrone spin trap, N-tert-butyl-α-phenylnitrone, decreased the extent of DNA damage evoked by nickel. Quercetin caused a further decrease in the extent of the damage in the presence of the trap. The results obtained suggest that reactive oxygen species, including free radicals, might be involved in the formation of DNA lesions induced by nickel chloride in colonic mucosa cells and that quercetin may exert protective effects in these cells. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Helicobacter pylori is a common human pathogen and its infection is believed to contribute to gastric cancer. Impaired DNA repair may fuel up cancer transformation by the accumulation of mutation and increased susceptibility to exogenous carcinogens. To evaluate the role of infection of H. pylori in DNA damage and repair we determined: (1) the level of endogenous basal, oxidative and alkylative DNA damage, and (2) the efficacy of removal of DNA damage induced by hydrogen peroxide and the antibiotic amoxicillin in the H. pylori-infected and non-infected GMCs. DNA damage and the efficacy of DNA repair were evaluated by the alkaline single cell gel electrophoresis (comet assay). Specific damage to the DNA bases were assayed with the DNA repair enzymes formamidopyrimidine-DNA glycosylase (Fpg) recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. The level of basal and oxidative DNA in the infected GMCs was higher than non-infected cells. H. pylori-infected GMCs displayed enhanced susceptibility to hydrogen peroxide than control cells. There was no difference between the efficacy of DNA repair in the infected and non-infected cells after treatment with hydrogen peroxide and amoxicillin. Our results indicate that H. pylori infection may be correlated with oxidative DNA damage in GMCs. Therefore, these features can be considered as a risk marker for gastric cancer associated with H. pylori infection and the comet assay may be applied to evaluate this marker.  相似文献   

16.
Impaired DNA repair may fuel up malignant transformation of breast cells due to the accumulation of spontaneous mutations in target genes and increasing susceptibility to exogenous carcinogens. Moreover, the effectiveness of DNA repair may contribute to failure of chemotherapy and resistance of breast cancer cells to drugs and radiation. The breast cancer susceptibility genes BRCA1 and BRCA2 are involved in DNA repair. To evaluate further the role of DNA repair in breast cancer we determined: (1) the kinetics of removal of DNA damage induced by hydrogen peroxide and the anticancer drug doxorubicin, and (2) the level of basal, oxidative and alkylative DNA damage before and during/after chemotherapy in the peripheral blood lymphocytes of breast cancer patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. We observed slower kinetics of DNA repair after treatment with hydrogen peroxide and doxorubicin in lymphocytes of breast cancer patients compared to control individuals. The level of basal, oxidative and alkylative DNA damage was higher in breast cancer patients than in the control and the difference was more pronounced when patients after chemotherapy were engaged, but usually the level of DNA damage in these patients was too high to be measured with our system. Our results indicate that peripheral blood lymphocytes of breast cancer patients have more damaged DNA and display decreased DNA repair efficacy. Therefore, these features can be considered as risk markers for breast cancer, but the question whether they are the cause or a consequence of the illness remains open. Nevertheless, our results suggest that research on the mutagen sensitivity and efficacy of DNA repair could impact the development of new diagnostic and screening strategies as well as indicate new targets to prevent and cure cancer. Moreover, the comet assay may be applied to evaluate the suitability of a particular mode of chemotherapy to a particular cancer patient.  相似文献   

17.
Hydrogen sulfide (H(2)S) is produced by indigenous sulfate-reducing bacteria in the large intestine and represents an environmental insult to the colonic epithelium. Clinical studies have linked the presence of either sulfate-reducing bacteria or H(2)S in the colon with chronic disorders such as ulcerative colitis and colorectal cancer, although at this point, the evidence is circumstantial and underlying mechanisms remain undefined. We showed previously that sulfide at concentrations similar to those found in the human colon induced genomic DNA damage in mammalian cells. The present study addressed the nature of the DNA damage by determining if sulfide is directly genotoxic or if genotoxicity requires cellular metabolism. We also questioned if sulfide genotoxicity is mediated by free radicals and if DNA base oxidation is involved. Naked nuclei from untreated Chinese hamster ovary cells were treated with sulfide; DNA damage was induced by concentrations as low as 1 micromol/L. This damage was effectively quenched by cotreatment with butylhydroxyanisole. Furthermore, sulfide treatment increased the number of oxidized bases recognized by formamidopyrimidine [fapy]-DNA glycosylase. These results confirm the genotoxicity of sulfide and strongly implicate that this genotoxicity is mediated by free radicals. These observations highlight the possible role of sulfide as an environmental insult that, given a predisposing genetic background, may lead to genomic instability or the cumulative mutations characteristic of colorectal cancer.  相似文献   

18.
Reactive oxygen species induce a pharmacopoeia of oxidized bases in DNA. DNA can be cleaved at most of the sites of these modified bases by digestion with a combination of two base excision repair glycosylases from Escherichia coli, Fpg glycosylase, and endonuclease III. The frequency of the resulting glycosylase-dependent 5'-phosphoryl ends can be mapped at nucleotide resolution along a sequencing gel autoradiogram by a genomic sequencing technique, ligation-mediated polymerase chain reaction (LMPCR). In cultured rat cells, the frequency of endogenous oxidized bases in mitochondrial DNA is sufficiently high, about one oxidized base per 100 kb, to be directly mapped from 0.1 microg of total cellular DNA preparations by LMPCR. Nuclear DNA has a lower frequency of endogenous oxidative base damage which cannot be mapped from 1-microg preparations of total cellular DNA. Preparative gel electrophoresis of the PGK1 and p53 genes from 300 microg of restriction endonuclease-digested genomic DNA showed a 25-fold enrichment for the genes and, after endonuclease digestion followed by LMPCR, gave sufficient signal to map the frequency of oxidized bases from human cells treated with 50 microM H2O2.  相似文献   

19.
Genomic DNA is constantly being damaged and repaired and our genomes exist at lesion equilibrium for damage created by endogenous mutagens. Mitochondrial DNA (mtDNA) has the highest lesion equilibrium frequency recorded; presumably due to damage by H2O2 and free radicals generated during oxidative phosphorylation processes. We measured the frequencies of single strand breaks and oxidative base damage in mtDNA by ligation-mediated PCR and a quantitative Southern blot technique coupled with digestion by the enzymes endonuclease III and formamidopyrimidine DNA glycosylase. Addition of 5 mM alloxan to cultured rat cells increased the rate of oxidative base damage and, by several fold, the lesion frequency in mtDNA. After removal of this DNA damaging agent from culture, the single strand breaks and oxidative base damage frequency decreased to levels slightly below normal at 4 h and returned to normal levels at 8 h, the overshoot at 4 h being attributed to an adaptive up-regulation of mitochondrial excision repair activity. Guanine positions showed the highest endogenous lesion frequencies and were the most responsive positions to alloxan-induced oxidative stress. Although specific bases were consistently hot spots for damage, there was no evidence that removal of these lesions occurred in a strand-specific manner. The data reveal non-random oxidative damage to several nucleotides in mtDNA and an apparent adaptive, non-strand selective response for removal of such damage. These are the first studies to characterize oxidative damage and its subsequent removal at the nucleotide level in mtDNA.  相似文献   

20.
Werner's syndrome (WS) is an autosomal recessive disease marked by early symptoms of accelerated aging. There is evidence indicating accumulation of oxidized DNA bases to be a major factor in cellular aging. The first step of excision repair of such bases in human cells is their removal from DNA by glycosylases. 5-Hydroxymethyluracil (HMU)-DNA glycosylase excises HMU from DNA; another glycosylase removes many non-aromatic pyrimidine derivatives. Levels of glycosylases that excise oxidized pyrimidines from DNA were compared between confluent and proliferating populations of WS cells, age-matched controls, and young control cells. They were assayed by measurements of direct release of free bases from their respective DNA substrates. Specific activities of the glycosylase that releases various modified pyrimidines and of uracil-DNA glycosylase (which removes uracil from DNA) were essentially the same in all cell lines. Cell cycle variations of these enzymes also did not differ between WS and control cells. HMU-DNA glycosylase specific activity was reduced in WS cells. Reduction of HMU-DNA glycosylase has been described in senescent human WI-38 cells. Therefore, while neither WS nor senescent cells have overall deficiencies of DNA glycosylase activities, they both might have reduced excision of HMU from DNA. This indicates a possible role of HMU accumulation in the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号