首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In higher plants, the de-epoxidation of violaxanthin (Vx) to antheraxanthin and zeaxanthin is required for the pH-dependent dissipation of excess light energy as heat and by that process plays an important role in the protection against photo-oxidative damage. The de-epoxidation reaction was investigated in an in vitro system using reconstituted light-harvesting complex II (LHCII) and a thylakoid raw extract enriched in the enzyme Vx de-epoxidase. Reconstitution of LHCII with varying carotenoids was performed to replace lutein and/or neoxanthin, which are bound to the native complex, by Vx. Recombinant LHCII containing either 2 lutein and 1 Vx or 1.6 Vx and 1.1 neoxanthin or 2.8 Vx per monomer were studied. Vx de-epoxidation was inducible for all complexes after the addition of Vx de-epoxidase but to different extents and with different kinetics in each complex. Analysis of the kinetics indicated that the three possible Vx binding sites have at least two, and perhaps three, specific rate constants for de-epoxidation. In particular, Vx bound to one of the two lutein binding sites of the native complex, most likely L1, was not at all or only at a slow rate convertible to Zx. In reisolated LHCII, newly formed Zx almost stoichiometrically replaced the transformed Vx, indicating that LHCII and Vx de-epoxidase stayed in close contact during the de-epoxidation reactions and that no release of carotenoids occurred.  相似文献   

2.
The conversion of violaxanthin to zeaxanthin is essentially required for the pH-regulated dissipation of excess light energy in the antenna of photosystem II. Violaxanthin is bound to each of the antenna proteins of both photosystems. Former studies with recombinant Lhcb1 and different Lhca proteins implied that each antenna protein contributes specifically to violaxanthin conversion related to protein-specific affinities of the different violaxanthin binding sites. We investigated the violaxanthin de-epoxidation in the minor antenna proteins of photosystem II, Lhcb4-6. Recombinant proteins were reconstituted with different xanthophyll mixtures to study the conversion of violaxanthin at different xanthophyll binding sites in these proteins. The extent and kinetics of violaxanthin de-epoxidation were found to be dependent on the respective protein and, for each protein, also on the binding site of violaxanthin. In particular, violaxanthin bound to Lhcb4 was nearly inconvertible for de-epoxidation, whereas violaxanthin bound to Lhcb5 was fully convertible but with slow kinetics. Lhcb6 exhibited heterogeneous violaxanthin conversion characteristics, which could be assigned to different populations of reconstituted Lhcb6 complexes with respect to violaxanthin binding sites. The results support the proposed different binding affinities of violaxanthin to the three putative violaxanthin binding sites (V1, N1, and L2) in antenna proteins. Under consideration of former studies with Lhcb1 and Lhca proteins, the data imply that violaxanthin bound to the V1 and N1 binding site of antenna proteins is easily accessible for de-epoxidation in all antenna proteins, whereas violaxanthin bound to L2 is either only slowly or not convertible to zeaxanthin, depending on the respective protein.  相似文献   

3.
Pigment binding of photosystem I light-harvesting proteins   总被引:2,自引:0,他引:2  
Light-harvesting complexes (LHC) of higher plants are composed of at least 10 different proteins. Despite their pronounced amino acid sequence homology, the LHC of photosystem II show differences in pigment binding that are interpreted in terms of partly different functions. By contrast, there is only scarce knowledge about the pigment composition of LHC of photosystem I, and consequently no concept of potentially different functions of the various LHCI exists. For better insight into this issue, we isolated native LHCI-730 and LHCI-680. Pigment analyses revealed that LHCI-730 binds more chlorophyll and violaxanthin than LHCI-680. For the first time all LHCI complexes are now available in their recombinant form; their analysis allowed further dissection of pigment binding by individual LHCI proteins and analysis of pigment requirements for LHCI formation. By these different approaches a correlation between the requirement of a single chlorophyll species for LHC formation and the chlorophyll a/b ratio of LHCs could be detected, and indications regarding occupation of carotenoid-binding sites were obtained. Additionally the reconstitution approach allowed assignment of spectral features observed in native LHCI-680 to its components Lhca2 and Lhca3. It is suggested that excitation energy migrates from chlorophyll(s) fluorescing at 680 (Lhca3) via those fluorescing at 686/702 nm (Lhca2) or 720 nm (Lhca3) to the photosystem I core chlorophylls.  相似文献   

4.
We report a structural characterization by electron microscopy and image analysis of a supramolecular complex consisting of photosystem I and light-harvesting complex I from the unicellular green alga Chlamydomonas reinhardtii. The complex is a monomer, has longest dimensions of 21.3 and 18.2 nm in projection, and is significantly larger than the corresponding complex in spinach. Comparison with photosystem I complexes from other organisms suggests that the complex contains about 14 light-harvesting proteins, two or three of which bind at the side of the PSI-H subunit. We suggest that special light-harvesting I proteins play a role in the binding of phosphorylated light-harvesting complex II in state 2.  相似文献   

5.
In the present study, we investigated the epoxidation reaction of the violaxanthin (Vx) cycle in intact cells of Chlorella vulgaris. Our results show that the overall epoxidation is slightly slower in darkness compared to the epoxidation during high light (HL) illumination. The calculation of the rate constants of the two epoxidation steps revealed that, for both conditions, the first epoxidation step from zeaxanthin (Zx) to antheraxanthin (Ax) is faster than the second epoxidation step from Ax to Vx. However, the most noteworthy result of our present study is that Ax, which is transiently formed during the epoxidation reaction, participates in non-photochemical quenching of chlorophyll fluorescence (NPQ). A correlation between NPQ and the de-epoxidized xanthophyll cycle pigments during the time-course of the epoxidation reaction can only be achieved when NPQ is plotted versus the sum of Zx and Ax. The accumulation of significant amounts of Ax during the epoxidation reaction further indicates that Ax-dependent quenching proceeds with a similar efficiency compared to the Zx-mediated NPQ. As the xanthophyll-dependent NPQ relies on the presence of de-epoxidized xanthophylls in the PS II antenna, Ax-dependent NPQ is only possible under the assumption that Ax rebinds to the light-harvesting complex (LHC) II during the epoxidation reaction.  相似文献   

6.
We report a structural characterization by electron microscopy of green plant photosystem I solubilized by the mild detergent n-dodecyl-alpha-D-maltoside. It is shown by immunoblotting that the isolated complexes contain all photosystem I core proteins and all peripheral light-harvesting proteins. The electron microscopic analysis is based on a large data set of 14 000 negatively stained single-particle projections and reveals that most of the complexes are oval-shaped monomers. The monomers have a tendency to associate into artificial dimers, trimers, and tetramers in which the monomers are oppositely oriented. Classification of the dimeric complexes suggests that some of the monomers lack a part of the peripheral antenna. On the basis of a comparison with projections from trimeric photosystem I complexes from cyanobacteria, we conclude that light-harvesting complex I only binds to the core complex at the side of the photosystem I F/J subunits and does not cause structural hindrances for the type of trimerization observed in cyanobacterial photosystem I.  相似文献   

7.
Monospecific antibodies directed against typical domains of type 1, 2, and 3 light-harvesting complex (LHC) II apoproteins have been used (a) to identify these apoproteins on denaturing sodium dodecyl sulfate gels of barley (Hordeum vulgare) thylakoids, (b) to determine their distribution between grana and stroma membranes, and (c) to follow their accumulation during light-induced greening of etioplasts. In addition, we have studied the light-induced assembly of chlorophyll-protein complexes with a native green gel system (K.D. Allen, L.A. Staehelin [1991] Anal Biochem 194: 214-222). Western blot analysis of the three major LHCII apoprotein bands has identified the highest molecular mass band at 27.5 kD as containing the type 2 LHCII apoproteins, the middle band at 26.9 kD as containing the type 1 LHCII apoproteins, and the lowest band at 26.0 kD as containing the type 3 LHCII apoproteins. During light-induced greening of 6-d-old etiolated barley seedlings, the type 1, 2, and 3 LHCII apoproteins accumulate simultaneously and at similar rates but appear somewhat sooner (< 4 h) in thylakoids from apical than from basal (4-8 h) leaf segments. LHCI polypeptides accrue with similar kinetics, whereas the 33-kD oxygen-evolving complex polypeptides can be detected already in the 0-h light samples. During the most rapid phase of thylakoid development (8-24 h), two slightly larger (28.3 and 28.7 kD) type 2 LHCII apoproteins (precursor intermediates?) also accumulate in the thylakoids. No corresponding higher molecular mass forms of type 1 and 3 LHCII apoproteins could be detected. It is interesting that differences are still apparent in the composition of chlorophyll-protein complexes of light-control plants and those of etiolated plants greened for 8 d.  相似文献   

8.

Background  

Light harvesting complex (LHC) proteins function in photosynthesis by binding chlorophyll (Chl) and carotenoid molecules that absorb light and transfer the energy to the reaction center Chl of the photosystem. Most research has focused on LHCs of plants and chlorophytes that bind Chl a and b and extensive work on these proteins has uncovered a diversity of biochemical functions, expression patterns and amino acid sequences. We focus here on a less-studied family of LHCs that typically bind Chl a and c, and that are widely distributed in Chl c-containing and other algae. Previous phylogenetic analyses of these proteins suggested that individual algal lineages possess proteins from one or two subfamilies, and that most subfamilies are characteristic of a particular algal lineage, but genome-scale datasets had revealed that some species have multiple different forms of the gene. Such observations also suggested that there might have been an important influence of endosymbiosis in the evolution of LHCs.  相似文献   

9.
Kang  K.  Kim  Y. S.  Park  S.  Back  K. 《Photosynthetica》2009,47(4):638-640
Ten light-harvesting complex (Lhc) proteins were investigated to determine which was the most appropriate protein marker of senescence in detached rice leaves. The levels of Lhc proteins were monitored by immunoblot analysis, which was conducted using commercially available antibodies raised against each Lhc protein. Among the Lhc proteins evaluated in this study, Lhca1, Lhcb1, Lhcb2, Lhcb3, and Lhcb5 were not appropriate to be used as senescence markers while others can be used after optimization of the procedure.  相似文献   

10.
Linear electron flow (LEF) and cyclic electron flow (CEF) compete for light-driven electrons transferred from the acceptor side of photosystem I (PSI). Under anoxic conditions, such highly reducing electrons also could be used for hydrogen (H2) production via electron transfer between ferredoxin and hydrogenase in the green alga Chlamydomonas reinhardtii. Partitioning between LEF and CEF is regulated through PROTON-GRADIENT REGULATION5 (PGR5). There is evidence that partitioning of electrons also could be mediated via PSI remodeling processes. This plasticity is linked to the dynamics of PSI-associated light-harvesting proteins (LHCAs) LHCA2 and LHCA9. These two unique light-harvesting proteins are distinct from all other LHCAs because they are loosely bound at the PSAL pole. Here, we investigated photosynthetic electron transfer and H2 production in single, double, and triple mutants deficient in PGR5, LHCA2, and LHCA9. Our data indicate that lhca2 and lhca9 mutants are efficient in photosynthetic electron transfer, that LHCA2 impacts the pgr5 phenotype, and that pgr5/lhca2 is a potent H2 photo-producer. In addition, pgr5/lhca2 and pgr5/lhca9 mutants displayed substantially different H2 photo-production kinetics. This indicates that the absence of LHCA2 or LHCA9 impacts H2 photo-production independently, despite both being attached at the PSAL pole, pointing to distinct regulatory capacities.

Alteration of the light-harvesting composition of photosystem I impacts photosynthetic electron transfer and hydrogen production.  相似文献   

11.
Chloroplasts are central to the provision of energy for green plants. Their photosynthetic membrane consists of two major complexes converting sunlight: photosystem I (PSI) and photosystem II (PSII). The energy flow toward both photosystems is regulated by light-harvesting complex II (LHCII), which after phosphorylation can move from PSII to PSI in the so-called state 1 to state 2 transition and can move back to PSII after dephosphorylation. To investigate the changes of PSI and PSII during state transitions, we studied the structures and frequencies of all major membrane complexes from Arabidopsis thaliana chloroplasts at conditions favoring either state 1 or state 2. We solubilized thylakoid membranes with digitonin and analyzed the complete set of complexes immediately after solubilization by electron microscopy and image analysis. Classification indicated the presence of a PSI-LHCII supercomplex consisting of one PSI-LHCI complex and one LHCII trimer, which was more abundant in state 2 conditions. The presence of LHCII was confirmed by excitation spectra of the PSI emission of membranes in state 1 or state 2. The PSI-LHCII complex could be averaged with a resolution of 16 A, showing that LHCII has a specific binding site at the PSI-A, -H, -L, and -K subunits.  相似文献   

12.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI–LHCI–LHCII supercomplex. The binding site(s) of the “additional” LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that “additional” LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.

The light-harvesting antennae of photosystem I facilitate energy transfer from trimeric light-harvesting complex II to photosystem I in the stroma lamellae membrane.  相似文献   

13.
14.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 °C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing “activity gels”. Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being “self-digested”, also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 °C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg2+, and inhibited by Zn2+, Cd2+, EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing “activity gels” or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

15.
Light-harvesting complex II (LHCII) prepared from isolated thylakoids of either broken or intact chloroplasts by three independent methods, exhibits proteolytic activity against LHCII. This activity is readily detectable upon incubation of these preparations at 37 degrees C (without addition of any chemicals or prior pre-treatment), and can be monitored either by the LHCII immunostain reduction on Western blots or by the Coomassie blue stain reduction in substrate-containing "activity gels". Upon SDS-sucrose density gradient ultracentrifugation of SDS-solubilized thylakoids, a method which succeeds in the separation of the pigment-protein complexes in their trimeric and monomeric forms, the protease activity copurifies with the LHCII trimer, its monomer exhibiting no activity. This LHCII trimer, apart from being "self-digested", also degrades the Photosystem II (PSII) core proteins (D1, D2) when added to an isolated PSII core protein preparation containing the D1/D2 heterodimer. Under our experimental conditions, 50% of LHCII or the D1, D2 proteins are degraded by the LHCII-protease complex within 30 min at 37 degrees C and specific degradation products are observed. The protease is light-inducible during chloroplast biogenesis, stable in low concentrations of SDS, activated by Mg(2+), and inhibited by Zn(2+), Cd(2+), EDTA and p-hydroxy-mercury benzoate (pOHMB), suggesting that it may belong to the cysteine family of proteases. Upon electrophoresis of the LHCII trimer on substrate-containing "activity gels" or normal Laemmli gels, the protease is released from the complex and runs in the upper part of the gel, above the LHCII trimer. A polypeptide of 140 kDa that exhibits proteolytic activity against LHCII, D1 and D2 has been identified as the protease. We believe that this membrane-bound protease is closely associated to the LHCII complex in vivo, as an LHCII-protease complex, its function being the regulation of the PSII unit assembly and/or adaptation.  相似文献   

16.
A preparation consisting of isolated dimeric peripheral antenna complexes from green plant photosystem I (light-harvesting complex I or LHCI) has been characterized by means of (polarized) steady-state absorption and fluorescence spectroscopy at low temperatures. We show that this preparation can be described reasonably well by a mixture of two types of dimers. In the first dimer about 10% of all Q(y)() absorption of the chlorophylls arises from two chlorophylls with absorption and emission maxima at about 711 and 733 nm, respectively, whereas in the second about 10% of the absorption arises from two chlorophylls with absorption and emission maxima at about 693 and 702 nm, respectively. The remaining chlorophylls show spectroscopic properties comparable to those of the related peripheral antenna complexes of photosystem II. We attribute the first dimer to a heterodimer of the Lhca1 and Lhca4 proteins and the second to a hetero- or homodimer of the Lhca2 and/or Lhca3 proteins. We suggest that the chlorophylls responsible for the 733 nm emission (F-730) and 702 nm emission (F-702) are excitonically coupled dimers and that F-730 originates from one of the strongest coupled pair of chlorophylls observed in nature.  相似文献   

17.
Proteomics of Chlamydomonas reinhardtii light-harvesting proteins   总被引:1,自引:0,他引:1  
With the recent development of techniques for analyzing transmembrane thylakoid proteins by two-dimensional gel electrophoresis, systematic approaches for proteomic analyses of membrane proteins became feasible. In this study, we established detailed two-dimensional protein maps of Chlamydomonas reinhardtii light-harvesting proteins (Lhca and Lhcb) by extensive tandem mass spectrometric analysis. We predicted eight distinct Lhcb proteins. Although the major Lhcb proteins were highly similar, we identified peptides which were unique for specific lhcbm gene products. Interestingly, lhcbm6 gene products were resolved as multiple spots with different masses and isoelectric points. Gene tagging experiments confirmed the presence of differentially N-terminally processed Lhcbm6 proteins. The mass spectrometric data also revealed differentially N-terminally processed forms of Lhcbm3 and phosphorylation of a threonine residue in the N terminus. The N-terminal processing of Lhcbm3 leads to the removal of the phosphorylation site, indicating a potential novel regulatory mechanism. At least nine different lhca-related gene products were predicted by comparison of the mass spectrometric data against Chlamydomonas expressed sequence tag and genomic databases, demonstrating the extensive variability of the C. reinhardtii Lhca antenna system. Out of these nine, three were identified for the first time at the protein level. This proteomic study demonstrates the complexity of the light-harvesting proteins at the protein level in C. reinhardtii and will be an important basis of future functional studies addressing this diversity.  相似文献   

18.
In higher plants, the major part of the xanthophyll cycle pigment violaxanthin (Vx) is non-covalently bound to the main light-harvesting complex of PSII (LHCII). Under saturating light conditions Vx has to be released from its binding site into the surrounding lipid phase, where it is converted to zeaxanthin (Zx) by the enzyme Vx de-epoxidase (VDE). In the present study we investigated the influence of thylakoid lipids on the de-epoxidation of Vx, which was still associated with the LHCII. We isolated LHCII with different concentrations of native, endogenous lipids and Vx by sucrose gradient centrifugation or successive cation precipitation. Analysis of the different LHCII preparations showed that the concentration of LHCII-associated Vx was correlated with the concentration of the main thylakoid lipid monogalactosyldiacylglycerol (MGDG) associated with the complexes. Decreases in the MGDG content of the LHCII led to a diminished Vx concentration, indicating that a part of the total Vx pool was located in an MGDG phase surrounding the LHCII, whereas another part was bound to the LHCII apoproteins. We further studied the convertibility of LHCII-associated Vx in in-vitro enzyme assays by addition of isolated VDE. We observed an efficient and almost complete Vx conversion in the LHCII fractions containing high amounts of endogenous MGDG. LHCII preparations with low concentrations of MGDG exhibited a strongly reduced Vx de-epoxidation, which could be increased by addition of exogenous, pure MGDG. The de-epoxidation of LHCII-associated Vx was saturated at a much lower concentration of native, endogenous MGDG compared with the concentration of isolated, exogenous MGDG, which is needed for optimal VDE activity in in-vitro assays employing pure isolated Vx.  相似文献   

19.
Grana and stroma lamellae fractions prepared from illuminated chloroplasts (Lactuca sativa L. var. Manoa) by French press treatment contained less violaxanthin and more zeaxanthin than the corresponding fractions from dark controls. In both fractions, only part of the total violaxanthin was de-epoxidized under illumination, and the ratio of de-epoxidized and unchanged violaxanthin was similar. This not only shows that the de-epoxidation system is present in both grana and stroma thylakoids but also that violaxanthin is heterogeneous in both membranes. The presence and similarity of the de-epoxidation system in grana and stroma lamellae suggest that the function of the violaxanthin cycle is linked to photosynthetic activities which are common to both types of membranes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号