首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studies with (35)S-labeled substrates were conducted to investigate the pathway involved in the reduction of sulfite to sulfide by cell-free extracts of the sulfate-reducing organism Desulfovibrio vulgaris. The results showed that accumulation of thiosulfate occurred when crude extracts were incubated under appropriate conditions with sulfite as substrate. With labeled sulfite as substrate, thiosulfate with equal distribution of radioactivity in both sulfur atoms was formed. When the rates of formation of (35)S(2-) from inner- and outer-labeled thiosulfate were compared, the rate of formation from outer-labeled thiosulfate was greater. Time studies with S-(35)SO(3) (2-) showed an increase of (35)S(2-) with time and an increasing ratio of doubly labeled to inner labeled thiosulfate remaining in the reaction mixture. From these studies it is concluded that thiosulfate is a stable intermediate formed from sulfite during the reduction of sulfate by D. vulgaris. Both sulfur atoms are derived from sulfite; during the utilization of thiosulfate, the outer sulfur is reduced to sulfide and the inner sulfur recycles through a sulfite pool.  相似文献   

2.
A trithionate reductase system was isolated and purified from extracts of Desulfovibrio vulgaris. This system reduced trithionate to thiosulfate and consisted of two proteins. One was bisulfite reductase, an enzyme that reduces bisulfite to trithionate, and the second component was designated TR-1. Both enzymes were required to reduce trithionate to thiosulfate. Flavodoxin and cytochrome c3 from D. vulgaris were tested for their ability to function as electron carriers during trithionate reduction. When molecular hydrogen was the source of electrons for the reduction, both flavodoxin and cytochrome c3 were required. In contrast, when the pyruvate phosphoroclastic system was the reductant, flavodoxin alone participated as the electron carrier. The results indicate that flavodoxin, but not cytochrome c3, interacted with the trithionate reductase system. The cytochrome in the hydrogenase-linked assay functioned as an electron carrier between hydrogenase and flavodoxin.  相似文献   

3.
Bisulfite reductase was purified from extracts of Desulfovibrio vulgaris. By colorimetric analyses trithionate was found to be the major product, being formed in quantities 5 to 10 times more than two other detectable products, thiosulfate and sulfide. When [35S]bisulfite was used as the substrate, all three products were radioactively labeled. Degradation of [35S]trithionate showed that all of its sulfur atoms were equally labeled. In contrast, [35S]thiosulfate contained virtually all of the radioactivity in the sulfonate atom while the sulfane atom was unlabeled. These results, in conjunction with the funding that the sulfide was radioactive, led to the conclusion that bisulfite reductase reduced bisulfite to trithionate as the major product and sulfide as the minor product; the reason for the unusual labeling pattern found in the thiosulfate molecule was not apparent at this time. When bisulfite reductase was incubated with [35S]bisulfite in the presence of another protein fraction, FII, the thiosulfate formed from this reaction contained both sulfur atoms having equal radioactivity. This discovery, plus the fact that trithionate was not reduced to thiosulfate under identical conditions, led to the speculation that bisulfite could be reduced to thiosulfate by another pathway not involving trithionate.  相似文献   

4.
Adenylyl sulfate reductase has been purified from the anaerobic sulfate-reducing bacterium, Desulfovibrio vulgaris, and judged to be homogenous by several criteria. Different forms of the enzyme could be visualized in polyacrylamide gels after electrophoresis and these polymeric species have been studied by a combination of absorption spectra, polyacrylamide gel electrophoresis, and sedimentation velocity experiments. A dimeric species of molecular weight 440,000 is stable in potassium phosphate buffer but can be dissociated to a 220,000 molecular weight species by either changing the buffer system to Tris-maleate or addition of AMP, DAMP, or adenylyl sulfate. Other catalytically active nucleotides are not capable of effecting this dissociation. The enzyme was determined to contain 12 non-heme irons, 12 acid-labile sulfides, and 1 FAD per molecule when calculated on the basis of a monomeric molecular weight of 220,000. ;el electrophoresis in the presence of sodium dodecyl sulfate indicated subunits of molecular weight 72,000 and 20,000. The extinction coefficient when determined in phosphate buffer at 372 nm is 108,000 M-1 cm-a. Steady state kinetic experiments employing ferricyanide, cytochrome c, and reduced methyl viologen as artificial electron transfer reagents were performed and the kinetic constants obtained under various conditions. Several nucleotide substrates were employed and compared in each assay with respect to Km and Vmax. The reduction of cytochrome c was found to be sensitive to both anaerobiosis and superoxide dismutase, suggesting the involvement of superoxide anions with this electron acceptor.  相似文献   

5.
Huang VW  Emerson JP  Kurtz DM 《Biochemistry》2007,46(40):11342-11351
Stopped-flow mixing of the Desulfovibrio vulgaris two-iron superoxide reductase (2Fe-SOR) containing the ferrous active site with superoxide generates a dead time intermediate whose absorption spectrum is identical to that of a putative ferric-hydroperoxo intermediate previously observed by pulse radiolysis. The dead time intermediate is shown to be a product of reaction with superoxide and to be generated at a much higher proportion of active sites than by pulse radiolysis. This intermediate decays smoothly to the resting ferric active site ( approximately 30 s-1 at 2 degrees C and pH 7) with no other detectable intermediates. Deuterium isotope effects demonstrate that solvent proton donation occurs in the rate-determining step of dead time intermediate decay and that neither of the conserved pocket residues, Glu47 or Lys48, functions as a rate-determining proton donor between pH 6 and pH 8. Fluoride, formate, azide, and phosphate accelerate decay of the dead time intermediate and for azide or fluoride lead directly to ferric-azido or -fluoro complexes of the active site, which inhibit Glu47 ligation. A solvent deuterium isotope effect is observed for the azide-accelerated decay, and the decay rate constants are proportional to the concentrations and pKa values of HX (X- = F-, HCO2-, N3-). These data indicate that the protonated forms of the anions function analogously to solvent as general acids in the rate-determining step. The results support the notion that the ferrous SOR site reacts with superoxide by an inner sphere process, leading directly to the ferric-hydroperoxo intermediate, and demonstrate that the decay of this intermediate is subject to both specific- and general-acid catalysis.  相似文献   

6.
Thiosulfate reductase was purified to an almost homogeneous state from Desulfovibrio vulgaris, strain Miyazaki F, by ammonium sulfate precipitation, chromatography on DEAE-Toyopearl, Ultrogel AcA 34, and hydroxylapatite, and disc electrophoresis. The specific activity was increased 580-fold over the crude extract. The molecular weight was determined by gel filtration to be 85,000-89,000, differing from those reported for thiosulfate reductases from other Desulfovibrio strains. The enzyme had no subunit structure. When coupled with hydrogenase and methyl viologen, it stoichiometrically reduced thiosulfate to sulfite and sulfide with consumption of hydrogen. It did not reduce sulfite or trithionate. Cytochrome c3 was active as an electron donor. More than 0.75 mM thiosulfate inhibited the enzyme activity. o-Phenanthroline and 2,2'-bipyridine inhibited the enzyme and ferrous ion stimulated the reaction.  相似文献   

7.
Superoxide reductases (SORs) contain a novel square pyramidal ferrous [Fe(NHis)(4)(SCys)] site that rapidly reduces superoxide to hydrogen peroxide. Here we report extensive pulse radiolysis studies on recombinant two-iron SOR (2Fe-SOR) from Desulfovibrio vulgaris. The results support and elaborate on our originally proposed scheme for reaction of the [Fe(NHis)(4)(SCys)] site with superoxide [Coulter, E. D., Emerson, J. E., Kurtz, D. M., Jr., and Cabelli, D. E. (2000) J. Am. Chem. Soc. 122, 11555-11556]. This scheme consists of second-order diffusion-controlled formation of an intermediate absorbing at approximately 600 nm, formulated as a ferric-(hydro)peroxo species, and its decay to the carboxylate-ligated ferric [Fe(NHis)(4)(SCys)] site with loss of hydrogen peroxide. The second-order rate constant for formation of the 600-nm intermediate is essentially pH-independent (pH 5-9.5), shows no D(2)O solvent isotope effect at pH 7.7, and decreases with increasing ionic strength. These data indicate that formation of the intermediate does not involve a rate-determining protonation, and are consistent with interaction of the incoming superoxide anion with a positive charge at or near the ferrous [Fe(NHis)(4)(SCys)] site. The rate constant for decay of the 600-nm intermediate follows the pH-dependent rate law: k(2)(obs) = k(2)'[H(+)] + k(2)' ' and shows a significant D(2)O solvent isotope effect at pH 7.7. The values of k(2)' and k(2)' ' indicate that the 600-nm intermediate decays via diffusion-controlled protonation at acidic pHs and a first-order process involving either water or a water-exchangeable proton on the protein at basic pHs. The formation and decay rate constants for an E47A variant of 2Fe-SOR are not significantly perturbed from their wild-type values, indicating that the conserved glutamate carboxylate does not directly displace the (hydro)peroxo ligand of the intermediate at basic pHs. The kinetics of a K48A variant are consistent with participation of the lysyl side chain in directing the superoxide toward the active site and in directing the protonation pathway of the ferric-(hydro)peroxo intermediate toward release of hydrogen peroxide.  相似文献   

8.
Extracts of Desulfovibrio vulgaris were found to contain serine transacetylase and cysteine synthase activities. When extracts were incubated with bisulfite and o-acetylserine, or acetyl coenzyme A plus L-serine, under a hydrogen atmosphere, cysteine was formed. Pyruvate served as a reductant for bisulfite reduction to sulfide and concomitantly provided the acetyl moiety for acetyl coenzyme A formation. Consequently, when extracts were incubated with pyruvate, bisulfite, and L-serine, cysteine synthesis resulted.  相似文献   

9.
Formate: cytochrome oxidoreductase of Desulfovibrio vulgaris   总被引:4,自引:0,他引:4  
  相似文献   

10.
Reductive titration curves of flavodoxin from Desulfovibrio vulgaris displayed two one-electron steps. The redox potential E-2 for the couple oxidized flavodoxin/flavodoxin semiquinone was determined by direct titration with dithionite. E-2 was -149 plus or minus 3 mV (pH 7.78, 25 degrees C). The redox potential E-1 for the couple flavodoxin semiquinone/fully reduced flavodoxin was deduced from the equilibrium concentration of these species in the presence of hydrogenase and H-2. E-1 was -438 plus or minus 8 mV (pH 7.78, 25 degrees C). Light-absorption and fluorescence spectra of flavodoxin in its three redox states have been recorded. Both the rate and extent of reduction of flavodoxin semiguinone with dithionite were found to depend on pH. An equilibrium between the semiquinone and hydroquinone forms occurred at pH values close to the neutrality, even in the presence of a large excess of dithionite, suggesting an ionization in fully reduced flavodoxin with a pK-a = 6.6. The association constants K for the three FMN redox forms with the apoprotein were deduced from the value of K (K = 8 times 10-7 M-1) measured with oxidized EMN at pH 7.0. Oxidized flavodoxin was found to comproportionate with the fully reduced protein (k-comp = 4.3 times 10-3 M-1 times s-1, pH 9.0, 22 degrees C) and with reduced free FMN (K-comp = 44 M-1 times s-1, pH 8.1, 20 degrees C). Fast oxidation of reduced flavodoxin occurred in the presence of O-2. Slower oxidation of semiquinone was dependent on pH in a drastic way.  相似文献   

11.
Dissimilatory reduction of bisulfite by Desulfovibrio vulgaris.   总被引:2,自引:2,他引:0       下载免费PDF全文
The reduction of bisulfite by Desulfovibrio vulgaris was investigated. Crude extracts reduced bisulfite to sulfide without the formation (detection) of any intermediates such as trithionate or thiosulfate. When the particulate fractions was removed from crude extracts by high-speed centrifugation, the soluble supernatant fraction reduced bisulfite sequentially to trithionate, thiosulfate, and sulfide. Addition of particles or purified membranes to the soluble fraction restored the original activity demonstrated by crude extracts, i.e., reduction of bisulfite to sulfide without the formation of trithionate and/or thiosulfate. By using antiserum directed against bisulfite reductase, the reduction of bisulfite by crude extracts was inhibited. This finding, in addition to several recycling studies of thiosulfate reduction, provided evidence that bisulfite reduction by D. vulgaris operated through the pathway involving trithionate and thiosulfate as intermediates. The role of membranes in this process is discussed.  相似文献   

12.
Desulfovibrio vulgaris Hildenborough is a Gram-negative sulfate-reducing bacterium (SRB), and the physiology of SRBs can impact many anaerobic environments including radionuclide waste sites, oil reservoirs and metal pipelines. In an attempt to understand D. vulgaris as a population that can adhere to surfaces, D. vulgaris cultures were grown in a defined medium and analysed for carbohydrate production, motility and biofilm formation. Desulfovibrio vulgaris wild-type cells had increasing amounts of carbohydrate into stationary phase and approximately half of the carbohydrate remained internal. In comparison, a mutant that lacked the 200 kb megaplasmid, strain DeltaMP, produced less carbohydrate and the majority of carbohydrate remained internal of the cell proper. To assess the possibility of carbohydrate re-allocation, biofilm formation was investigated. Wild-type cells produced approximately threefold more biofilm on glass slides compared with DeltaMP; however, wild-type biofilm did not contain significant levels of exopolysaccharide. In addition, stains specific for extracellular carbohydrate did not reveal polysaccharide material within the biofilm. Desulfovibrio vulgaris wild-type biofilms contained long filaments as observed with scanning electron microscopy (SEM), and the biofilm-deficient DeltaMP strain was also deficient in motility. Biofilms grown directly on silica oxide transmission electron microscopy (TEM) grids did not contain significant levels of an exopolysaccharide matrix when viewed with TEM and SEM, and samples stained with ammonium molybdate also showed long filaments that resembled flagella. Biofilms subjected to protease treatments were degraded, and different proteases that were added at the time of inoculation inhibited biofilm formation. The data indicated that D. vulgaris did not produce an extensive exopolysaccharide matrix, used protein filaments to form biofilm between cells and silica oxide surfaces, and the filaments appeared to be flagella. It is likely that D. vulgaris used flagella for more than a means of locomotion to a surface, but also used flagella, or modified flagella, to establish and/or maintain biofilm structure.  相似文献   

13.
The complete amino acid sequence for the 148-amino acid flavodoxin from Desulfovibrio vulgaris was determined to be: H3N+-Met-Pro-Lys-Ala-Leu-Ile-Val-Tyr-Gly-Ser-Thr-Thr-Gly-Asn-Thr-Glu-Tyr-Thr-Ala-Glu-Thr-Ile-Ala-Arg-Glu-Leu-Ala-Asn-Ala-Gly-Tyr-Glu-Val-Asp-Ser-Arg-Asp-Ala-Ala-Ser-Val-Glu-Ala-Gly-Gly-Leu-Phe-Glu-Gly-Phe-Asp-Leu-Val-Leu-Leu-Gly-Cys-Ser-Thr-Trp-Gly-Asp-Asp-Ser-Ile-Glu-Leu-Gln-Asp-Asp-Phe-Ile-Pro-Leu-Phe-Asp-Ser-Leu-Glu-Glu-Thr-Gly-Ala-Gln-Gly-Arg-Lys-Val-Ala-Cys-Phe-Gly-Cys-Gly-Asp-Ser-Ser-Tyr-Glu-Tyr-Phe-Cys-Gly-Ala-Val-Asp-Ala-IleGlu-Glu-Lys-Leu-Lys-Asn-Leu-Gly-Ala-Glu-Ile-Val-Gln-Asp-Gly-Leu-Arg-Ile-Asp-Gly-Asp-Pro-Arg-Ala-Ala-Arg-Asp-Asp-Ile-Val-Gly-Try-Ala-His-Asp-Val-Arg-Gly-Ala-Ile-COO. This protein is of interest as it was the first flavoenzyme for which high resolution x-ray diffraction studies were published (Watenpaugh, K.D., Sieker, L.C., and Jensen, L.H. (1973) Proc. NAtl. Acad. Sci. U.S.A. 70, 3857-3860). Ser(10), Thr(12), Asn(14), and Thr(15) were shown to bind the phosphate of the FMN while the isoalloxazine ring is positioned between Trp(60) and Tyr(98).  相似文献   

14.
The structural genes for dissimilatory sulfite reductase (desulfoviridin) from Desulfovibrio vulgaris Hilden-borough were cloned as a 7.2-kbp SacII DNA fragment. Nucleotide sequencing indicated the presence of a third gene, encoding a protein of only 78 amino acids, immediately downstream from the genes for the alpha and beta subunits (dsvA and dsvB). We designated this protein DsvD and the gene encoding it the dsvD gene. The alpha- and beta-subunit sequences are highly homologous to those of the dissimilatory sulfite reductase from Archaeoglobus fulgidus, a thermophilic archaeal sulfate reducer, which grows optimally at 83 degrees C. A gene with significant homology to dsvD was also found immediately downstream from the dsrAB genes of A. fulgidus. The remarkable conservation of gene arrangement and sequence across domain (bacterial versus archaeal) and physical (mesophilic versus thermophilic) boundaries indicates an essential role for DsvD in dissimilatory sulfite reduction and allowed the construction of conserved deoxyoligonucleotide primers for detection of the dissimilatory sulfite reductase genes in the environment.  相似文献   

15.
Thiosulfate Reductase of Desulfovibrio vulgaris   总被引:7,自引:5,他引:2       下载免费PDF全文
The thiosulfate reductase of Desulfovibrio vulgaris has been purified and some of its properties have been determined. Only one protein component was detected when the purified enzyme was subjected to polyacrylamide gel electrophoresis at pH values of 8.9, 8.0, and 7.6. In the presence of H(2), the enzyme, when coupled to hydrogenase and with methyl viologen as an electron carrier, catalyzed the reduction of thiosulfate to hydogen sulfide. The use of specifically labeled (35)S-thiosulfate revealed that the outer sulfur atom was reduced to sulfide and the inner sulfur atom was released as sulfite. Thus, the enzyme catalyzes the reductive dismutation of thiosulfate to sulfide and sulfite. The molecular weight of the enzyme was determined by sedimentation equilibrium (16,300) and amino acid analysis (15,500). The enzyme sedimented as a single, symmetrical component with a calculated sedimentation coefficient of 2.21S. Amino acid analysis revealed the presence of two half-cystine residues per mole of enzyme and a total of 128 amino acid residues. Carbohydrate and organic phosphorus analyses revealed the presence of 9.2 moles of carbohydrate and 4.8 moles of phosphate per mole of enzyme. The substrate specificity of the enzyme was studied.  相似文献   

16.
17.
The genome of the sulphate reducing bacterium Desulfovibrio vulgaris Hildenborough, still considered a strict anaerobe, encodes two oxygen reductases of the bd and haem-copper types. The haem-copper oxygen reductase deduced amino acid sequence reveals that it is a Type A2 enzyme, which in its subunit II contains two c-type haem binding motifs. We have characterized the cytochrome c domain of subunit II and confirmed the binding of two haem groups, both with Met-His iron coordination. Hence, this enzyme constitutes the first example of a ccaa3 haem-copper oxygen reductase. The expression of D. vulgaris haem-copper oxygen reductase was found to be independent of the electron donor and acceptor source and is not altered by stress factors such as oxygen exposure, nitrite, nitrate, and iron; therefore the haem-copper oxygen reductase seems to be constitutive. The KCN sensitive oxygen reduction by D. vulgaris membranes demonstrated in this work indicates the presence of an active haem-copper oxygen reductase. D. vulgaris membranes perform oxygen reduction when accepting electrons from the monohaem cytochrome c553, thus revealing the first possible electron donor to the terminal oxygen reductase of D. vulgaris. The physiological implication of the presence of the oxygen reductase in this organism is discussed.  相似文献   

18.
A cytochrome c nitrite reductase (NiR) was purified for the first time from a microorganism not capable of growing on nitrate, the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. It was isolated from the membranes as a large heterooligomeric complex of 760 kDa, containing two cytochrome c subunits of 56 and 18 kDa. This complex has nitrite and sulfite reductase activities of 685 micromol NH(4)(+)/min/mg and 1.0 micromol H(2)/min/mg. The enzyme was studied by UV-visible and electron paramagnetic resonance (EPR) spectroscopies. The overall redox behavior was determined through a visible redox titration. The data were analyzed with a set of four redox transitions, with an E(0)' of +160 mV (12% of total absorption), -5 mV (38% of total absorption), -110 mV (38% of total absorption) and -210 mV (12% of total absorption) at pH 7.6. The EPR spectra of oxidized and partially reduced NiR show a complex pattern, indicative of multiple heme-heme magnetic interactions. It was found that D. vulgaris Hildenborough is not capable of using nitrite as a terminal electron acceptor. These results indicate that in this organism the NiR is not involved in the dissimilative reduction of nitrite, as is the case with the other similar enzymes isolated so far. The possible role of this enzyme in the detoxification of nitrite and/or in the reduction of sulfite is discussed.  相似文献   

19.
20.
The genomes of Desulfovibrio gigas and D. vulgaris   总被引:8,自引:0,他引:8  
Two-dimensional electrophoresis of sequential double-restriction digests showed that the genome of Desulfovibrio gigas compromised 1.63 x 10(6) bp (1.09 x 10(9) Dal) of DNA; an ammonia-limited chemostat population possessed an average of nine genomes per cell and a multiplying batch culture possessed approximately 17 genomes per cell. The genome size of D. vulgaris (Hildenborough) was 1.72 x 10(6) bp (1.14 x 10(9) Dal); a population from an ammonia-limited batch culture contained four genomes per cell. Control digestions and analyses with Escherichia coli GM4 agreed reasonably with published values: a genome size of 3.95 x 10(6) bp and approximately two genomes per cell from a stationary batch culture in glucose minimal medium. Desulfovibrio gigas carried two plasmids of approximately 70 MDal (1.05 x 10(5) bp) and approximately 40 MDal (6 x 10(4) bp); D. vulgaris (Hildenborough) contained one of approximately 130 MDal (1.95 x 10(5) bp). Single plasmids were also detected in a second strain of D. vulgaris and in strain Berre sol of D. desulfuricans but not in 10 other desulfovibrios including representatives of D. desulfuricans, D. vulgaris, D. salexigens and D. africanus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号