共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Bönisch C Schneider K Pünzeler S Wiedemann SM Bielmeier C Bocola M Eberl HC Kuegel W Neumann J Kremmer E Leonhardt H Mann M Michaelis J Schermelleh L Hake SB 《Nucleic acids research》2012,40(13):5951-5964
The histone variant H2A.Z has been implicated in many biological processes, such as gene regulation and genome stability. Here, we present the identification of H2A.Z.2.2 (Z.2.2), a novel alternatively spliced variant of histone H2A.Z and provide a comprehensive characterization of its expression and chromatin incorporation properties. Z.2.2 mRNA is found in all human cell lines and tissues with highest levels in brain. We show the proper splicing and in vivo existence of this variant protein in humans. Furthermore, we demonstrate the binding of Z.2.2 to H2A.Z-specific TIP60 and SRCAP chaperone complexes and its active replication-independent deposition into chromatin. Strikingly, various independent in vivo and in vitro analyses, such as biochemical fractionation, comparative FRAP studies of GFP-tagged H2A variants, size exclusion chromatography and single molecule FRET, in combination with in silico molecular dynamics simulations, consistently demonstrate that Z.2.2 causes major structural changes and significantly destabilizes nucleosomes. Analyses of deletion mutants and chimeric proteins pinpoint this property to its unique C-terminus. Our findings enrich the list of known human variants by an unusual protein belonging to the H2A.Z family that leads to the least stable nucleosome known to date. 相似文献
4.
5.
6.
The physical structure and the compact nature of the eukaryotic genome present a functional barrier for any cellular process that requires access to the DNA. The linker histone H1 is intrinsically involved in both the determination of and the stability of higher order chromatin structure. Because histone H1 plays a pivotal role in the structure of chromatin, we investigated the effect of histone H1 on the nucleosome remodeling activity of human SWI/SNF, an ATP-dependent chromatin remodeling complex. The results from both DNase I digestion and restriction endonuclease accessibility assays indicate that the presence of H1 partially inhibits the nucleosome remodeling activity of hSWI/SNF. Neither H1 bound to the nucleosome nor free H1 affected the ATPase activity of hSWI/SNF, suggesting that the observed inhibition of hSWI/SNF nucleosome remodeling activity depends on the structure formed by the addition of H1 to nucleosomes. 相似文献
7.
8.
9.
10.
Shukla MS Syed SH Goutte-Gattat D Richard JL Montel F Hamiche A Travers A Faivre-Moskalenko C Bednar J Hayes JJ Angelov D Dimitrov S 《Nucleic acids research》2011,39(7):2559-2570
Histone variants within the H2A family show high divergences in their C-terminal regions. In this work, we have studied how these divergences and in particular, how a part of the H2A COOH-terminus, the docking domain, is implicated in both structural and functional properties of the nucleosome. Using biochemical methods in combination with Atomic Force Microscopy and Electron Cryo-Microscopy, we show that the H2A-docking domain is a key structural feature within the nucleosome. Deletion of this domain or replacement with the incomplete docking domain from the variant H2A.Bbd results in significant structural alterations in the nucleosome, including an increase in overall accessibility to nucleases, un-wrapping of ~10 bp of DNA from each end of the nucleosome and associated changes in the entry/exit angle of DNA ends. These structural alterations are associated with a reduced ability of the chromatin remodeler RSC to both remodel and mobilize the nucleosomes. Linker histone H1 binding is also abrogated in nucleosomes containing the incomplete docking domain of H2A.Bbd. Our data illustrate the unique role of the H2A-docking domain in coordinating the structural-functional aspects of the nucleosome properties. Moreover, our data suggest that incorporation of a 'defective' docking domain may be a primary structural role of H2A.Bbd in chromatin. 相似文献
11.
核小体是构成真核生物染色质的基本结构单位,组蛋白变体H2A.Z及H3.3对染色质结构及基因转录过程发挥着重要的调控作用。体内研究核小体及染色质结构受到诸多因素限制,体外重构含有H2A.Z及H3.3的核小体结构是研究与组蛋白变体相关基因表达调控的重要方法之一。实验表达纯化了6种组蛋白,在复性的过程中装配了含有H2A.Z和H3.3的组蛋白八聚体。基于DNA序列10bp周期性及序列模体设计了3条易于形成核小体的DNA序列,通过PCR大量扩增的方法,回收了标记Cy3荧光分子的目的DNA序列。采用盐透析法体外组装了含有H2A.Z和H3.3的核小体结构,利用荧光标记、EB染色及考马斯亮蓝染色检测了含有组蛋白变体的核小体形成效率及形成过程的吉布斯自由能变化。结果发现,设计的3条DNA序列可以有效地组装形成含有组蛋白电梯的核小体结构,而且随着组蛋白八聚体与DNA比例的增加,核小体的形成效率显著提高;采用Cy3荧光标记可以灵敏且定量地计算组装过程的吉布斯自由能。该方法的建立对研究组蛋白变体相关的结构生物学及转录调控等具有一定的意义。 相似文献
12.
13.
Histone H2A.Z is structurally and functionally distinct from the major H2As. To understand the function of H2A.Z acetylation, we performed a mutagenic analysis of the six acetylated lysines in the N-terminal tail of Tetrahymena H2A.Z. Tetrahymena cannot survive with arginines at all six sites. Retention of one acetylatable lysine is sufficient to provide the essential function of H2A.Z acetylation. This essential function can be mimicked by deleting the region encompassing all six sites, or by mutations that reduce the positive charge of the N terminus at the acetylation sites themselves, or at other sites in the tail. These properties argue that the essential function of H2A.Z acetylation is to modify a "charge patch" by reducing the charge of the tail. 相似文献
14.
在真核生物染色质中,H2A.Z是高度保守的组蛋白变异体,与转录调控、基因组的稳定性密切相关。为了探讨组蛋白修饰、DNA弯曲度与H2A.Z核小体定位三者之间的关联,在得到实验所测的相关数据后,利用MINE算法并结合皮尔逊相关系数在酵母全基因组的转录起始位点周围探讨了三者间的线性与非线性关系。其中MIC算法可以定量的得出数据之间关联度大小的值,用于衡量数据之间是否存在着关联,而皮尔逊相关系数则用于检查是否为线性关联。结果除了发现大部分组蛋白修饰种类和核小体定位之间存在着线性关联外,还探测到有两种组蛋白修饰数据(H4ac修饰与GCN4修饰)和核小体定位数据之间存在着以往未发现的非线性关系(大致呈正余弦函数),并从数据的生物背景(组蛋白修饰与核小体位置)上探讨了出现非线性现象的原因。 相似文献
15.
Histone H2A.Z has a conserved function that is distinct from that of the major H2A sequence variants
Saccharomyces cerevisiae contains three genes that encode members of the histone H2A gene family. The last of these to be discovered, HTZ1 (also known as HTA3), encodes a member of the highly conserved H2A.Z class of histones. Little is known about how its in vivo function compares with that of the better studied genes (HTA1 and HTA2) encoding the two major H2As. We show here that, while the HTZ1 gene encoding H2A.Z is not essential in budding yeast, its disruption results in slow growth and formamide sensitivity. Using plasmid shuffle experiments, we show that the major H2A genes cannot provide the function of HTZ1 and the HTZ1 gene cannot provide the essential function of the genes encoding the major H2As. We also demonstrate for the first time that H2A.Z genes are functionally conserved by showing that the gene encoding the H2A.Z variant of the ciliated protozoan TETRAHYMENA: thermophila is able to rescue the phenotypes associated with disruption of the yeast HTZ1 gene. Thus, the functions of H2A.Z are distinct from those of the major H2As and are highly conserved. 相似文献
16.
Jensen K Santisteban MS Urekar C Smith MM 《Molecular genetics and genomics : MGG》2011,285(4):287-296
The incorporation of histone variants is one mechanism used by the eukaryotic cell to alter the generally repressive chromatin
template. However, the exact molecular mechanisms that direct this incorporation are not well understood. The SWR1 chromatin
remodeling complex that binds to and directs incorporation of histone variant H2A.Z into chromatin has been characterized,
but significantly less information is available concerning the requirements on the H2A.Z target molecule. We performed an
unbiased mutagenic screen designed to elucidate the function of H2A.Z in Saccharomyces cerevisiae. The screen identified residues within the conserved acidic patch of H2A.Z as being important for the function of the variant.
We characterized single point mutations in the patch that are phenotypically sensitive to a variety of growth conditions and
are expressed at lower protein levels, but are functionally defective (htz1-D99A, htz1-D99K, and htz1-E101K). The mutants were significantly less detectable by chromatin immunoprecipitation at PHO5, a gene previously described to be enriched for H2A.Z. These results identify acidic patch residues of H2A.Z that are critical
for mediating deposition and function in chromatin, and represent potential candidates for the interaction of H2A.Z with its
deposition and/or targeting machinery. 相似文献
17.
18.
19.