首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perturbation of adhesion mediated by cadherins was achieved by over-expressing truncated forms of E- and EP-cadherins (in which the extracellular domain was deleted) in different blastomeres of stage 6 Xenopus laevis embryos. Injections of mRNA encoding truncated E- and EP-cadherins into A1A2 blastomeres resulted in inhibition of cell adhesion and, at later stages, in morphogenetic defects in the anterior neural tissues to which they mainly contribute. In addition, truncated EP-cadherin mRNA produced a duplication of the dorso-posterior axis in a significant number of cases. The expression of truncated E- and EP-cadherins in blastomeres involved in gastrulation and neural induction (B1B2 and C1), led to the duplication of the dorso-posterior axis as well as to defects in anterior structures. Morphogenetic defects obtained with truncated EP-cadherin were more severe than those induced with truncated E-cadherin. Cells derived from blastomeres injected with truncated EP-cadherin mRNA, dispersed more readily at the blastula and gastrula stages than the cells derived from the blastomeres expressing truncated E-cadherin. Presumptive mesodermal cells expressing truncated cadherins did not engage in coherent directional migration. The alteration of cadherin-mediated cell adhesion led directly to the perturbation of the convergent-extension movements during gastrulation as shown in the animal cap assays and indirectly to perturbation of neural induction. Although the cytoplasmic domains of type I cadherins share a high degree of sequence identity, the over-expression of their cytoplasmic domains induces a distinct pattern of perturbations, strongly suggesting that in vivo, each cadherin may transduce a specific adhesive signal. These graded perturbations may in part result from the relative ability of each cadherin cytoplasmic domain to titer the P-catenin.  相似文献   

2.
Perturbation of adhesion mediated by cadherins was achieved by over-expressing truncated forms of E- and EP-cadherins (in which the extracellular domain was deleted) in different blastomeres of stage 6 Xenopus laevis embryos. Injections of mRNA encoding truncated E- and EP-cadherins into A1A2 blastomeres resulted in inhibition of cell adhesion and, at later stages, in morphogenetic defects in the anterior neural tissues to which they mainly contribute. In addition, truncated EP-cadherin mRNA produced a duplication of the dorso-posterior axis in a significant number of cases. The expression of truncated E- and EP-cadherins in blastomeres involved in gastrulation and neural induction (B1B2 and C1), led to the duplication of the dorso-posterior axis as well as to defects in anterior structures. Morphogenetic defects obtained with truncated EP-cadherin were more severe than those induced with truncated E-cadherin. Cells derived from blastomeres injected with truncated EP-cadherin mRNA, dispersed more readily at the blastula and gastrula stages than the cells derived from the blastomeres expressing truncated E-cadherin. Presumptive mesodermal cells expressing truncated cadherins did not engage in coherent directional migration. The alteration of cadherin-mediated cell adhesion led directly to the perturbation of the convergent-extension movements during gastrulation as shown in the animal cap assays and indirectly to perturbation of neural induction. Although the cytoplasmic domains of type I cadherins share a high degree of sequence identity, the over-expression of their cytoplasmic domains induces a distinct pattern of perturbations, strongly suggesting that in vivo, each cadherin may transduce a specific adhesive signal. These graded perturbations may in part result from the relative ability of each cadherin cytoplasmic domain to titer the P-catenin.  相似文献   

3.
Cadherins are a family of transmembrane glycoproteins which play a key role in Ca(2+)-dependent cell-cell adhesion. Cytoplasmic domains of these molecules are anchored to the cell cytoskeleton and are required for cadherin function. To elucidate how the function of cadherins is controlled through their cytoplasmic domains, we deleted five different regions in the cytoplasmic domain of E-cadherin. After transfecting L cells with cDNA encoding the mutant polypeptides, we assayed aggregating activity of these transfectants; all these mutant proteins were shown to have an extracellular domain with normal Ca(2+)-sensitivity and molecular weight. Two mutant polypeptides with deletions in the carboxy half of the cytoplasmic domain, however, did not promote cell-cell adhesion and had also lost the ability to bind to the cytoskeleton, whereas the mutant molecules with deletions of other regions retained the ability to promote cell adhesion and to anchor to the cytoskeleton. Thus, the cytoplasmic domain contains a subdomain which was involved in the cell adhesion and cytoskeleton-binding functions. When E-cadherin in F9 cells or in L cells transfected with wild-type or functional mutant cadherin polypeptides was solubilized with nonionic detergents and immunoprecipitated, two additional 94 and 102 kDa components were coprecipitated. The 94 kDa component, however, was not detected in the immunoprecipitates from cells expressing the mutant cadherins which had lost the adhesive function. These results suggest that the interaction of the carboxy half of the cytoplasmic domain with the 94 kDa component regulates the cell binding function of the extracellular domain of E-cadherin.  相似文献   

4.
Phylogenetic analysis of the cadherin superfamily.   总被引:4,自引:0,他引:4  
Cadherins are a multigene family of proteins which mediate homophilic calcium-dependent cell adhesion and are thought to play an important role in morphogenesis by mediating specific intercellular adhesion. Different lines of experimental evidence have recently indicated that the site responsible for mediating adhesive interactions is localized to the first extracellular domain of cadherin. Based upon an analysis of the sequence of this domain, I show that cadherins can be classified into three groups with distinct structural features. Furthermore, using this sequence information a phylogenetic tree relating the known cadherins was assembled. This is the first such tree to be published for the cadherins. One cadherin subtype, neural cadherin (N-cadherin), shows very little sequence divergence between species, whereas all other cadherin subtypes show more substantial divergence, suggesting that selective pressure upon this domain may be greater for N-cadherin than for other cadherins. Phylogenetic analysis also suggests that the gene duplications which established the main branches leading to the different cadherin subtypes occurred very early in their history. These duplications set the stage for the diversified superfamily we now observe.  相似文献   

5.
Cadherins are cell surface adhesion proteins important for tissue development and integrity. Type I and type II, or classical, cadherins form adhesive dimers via an interface formed through the exchange, or “swapping”, of the N-terminal β-strands from their membrane-distal EC1 domains. Here, we ask which sequence and structural features in EC1 domains are responsible for β-strand swapping and whether members of other cadherin families form similar strand-swapped binding interfaces. We created a comprehensive database of multiple alignments of each type of cadherin domain. We used the known three-dimensional structures of classical cadherins to identify conserved positions in multiple sequence alignments that appear to be crucial determinants of the cadherin domain structure. We identified features that are unique to EC1 domains. On the basis of our analysis, we conclude that all cadherin domains have very similar overall folds but, with the exception of classical and desmosomal cadherin EC1 domains, most of them do not appear to bind through a strand-swapping mechanism. Thus, non-classical cadherins that function in adhesion are likely to use different protein-protein interaction interfaces. Our results have implications for the evolution of molecular mechanisms of cadherin-mediated adhesion in vertebrates.  相似文献   

6.
The cadherin-binding specificities of B-cadherin and LCAM   总被引:2,自引:2,他引:0       下载免费PDF全文
《The Journal of cell biology》1995,129(5):1379-1390
The cadherin family of calcium-dependent cell adhesion molecules plays an important part in the organization of cell adhesion and tissue segregation during development. The expression pattern and the binding specificity of each cadherin are of principal importance for its role in morphogenesis. B-Cadherin and LCAM, two chicken cadherins, have similar, but not identical, spatial and temporal patterns of expression. To examine the possibility that they might bind to one another in a heterophilic manner, we generated, by cDNA transfection, L- cell lines that express LCAM or B-cadherin. We then examined the abilities of these cells to coaggregate with each other and with other cadherin-expressing cells in short-term aggregation assays. The B- cadherin- and the LCAM-expressing cell lines segregate from P-, N-, or R-cadherin-expressing cells. B-cadherin- and LCAM-expressing cell lines, however, appear to be completely miscible, forming large mixed aggregates. Chick B-cadherin and murine E-cadherin also form mixed aggregates, indistinguishable from homophilic aggregates. Murine E- cadherin and chick LCAM coaggregate less completely, suggesting that the heterophilic interactions of these two cell lines are weak relative to homophilic interactions. These data suggest that heterophilic interactions between B-cadherin and LCAM are important during avian morphogenesis and help identify the amino acids in the binding domain that determine cadherin specificity.  相似文献   

7.
The extracellular homophilic-binding domain of the cadherins consists of 5 cadherin repeats (EC1-EC5). Studies on cadherin specificity have implicated the NH(2)-terminal EC1 domain in the homophilic binding interaction, but the roles of the other extracellular cadherin (EC) domains have not been evaluated. We have undertaken a systematic analysis of the binding properties of the entire cadherin extracellular domain and the contributions of the other EC domains to homophilic binding. Lateral (cis) dimerization of the extracellular domain is thought to be required for adhesive function. Sedimentation analysis of the soluble extracellular segment of C-cadherin revealed that it exists in a monomer-dimer equilibrium with an affinity constant of approximately 64 microm. No higher order oligomers were detected, indicating that homophilic binding between cis-dimers is of significantly lower affinity. The homophilic binding properties of a series of deletion constructs, lacking successive or individual EC domains fused at the COOH terminus to an Fc domain, were analyzed using a bead aggregation assay and a cell attachment-based adhesion assay. A protein with only the first two NH(2)-terminal EC domains (CEC1-2Fc) exhibited very low activity compared with the entire extracellular domain (CEC1-5Fc), demonstrating that EC1 alone is not sufficient for effective homophilic binding. CEC1-3Fc exhibited high activity, but not as much as CEC1-4Fc or CEC1-5Fc. EC3 is not required for homophilic binding, however, since CEC1-2-4Fc and CEC1-2-4-5Fc exhibited high activity in both assays. These and experiments using additional EC combinations show that many, if not all, the EC domains contribute to the formation of the cadherin homophilic bond, and specific one-to-one interaction between particular EC domains may not be required. These conclusions are consistent with a previous study on direct molecular force measurements between cadherin ectodomains demonstrating multiple adhesive interactions (Sivasankar, S., W. Brieher, N. Lavrik, B. Gumbiner, and D. Leckband. 1999. PROC: Natl. Acad. Sci. USA. 96:11820-11824; Sivasankar, S., B. Gumbiner, and D. Leckband. 2001. Biophys J. 80:1758-68). We propose new models for how the cadherin extracellular repeats may contribute to adhesive specificity and function.  相似文献   

8.
Type I and II classical cadherins help to determine the adhesive specificities of animal cells. Crystal-structure determination of ectodomain regions from three type II cadherins reveals adhesive dimers formed by exchange of N-terminal beta strands between partner extracellular cadherin-1 (EC1) domains. These interfaces have two conserved tryptophan side chains that anchor each swapped strand, compared with one in type I cadherins, and include large hydrophobic regions unique to type II interfaces. The EC1 domains of type I and type II cadherins appear to encode cell adhesive specificity in vitro. Moreover, perturbation of motor neuron segregation with chimeric cadherins depends on EC1 domain identity, suggesting that this region, which includes the structurally defined adhesive interface, encodes type II cadherin functional specificity in vivo.  相似文献   

9.
《The Journal of cell biology》1994,126(6):1353-1360
A novel member of the cadherin family of cell adhesion molecules has been characterized by cloning from rat liver, sequencing of the corresponding cDNA, and functional analysis after heterologous expression in nonadhesive S2 cells. cDNA clones were isolated using a polyclonal antibody inhibiting Ca(2+)-dependent intercellular adhesion of hepatoma cells. As inferred from the deduced amino acid sequence, the novel molecule has homologies with E-, P-, and N-cadherins, but differs from these classical cadherins in four characteristics. Its extracellular domain is composed of five homologous repeated domains instead of four characteristic for the classical cadherins. Four of the five domains are characterized by the sequence motifs DXNDN and DXD or modifications thereof representing putative Ca(2+)-binding sites of classical cadherins. In its NH2-terminal region, this cadherin lacks both the precursor segment and the endogenous protease cleavage site RXKR found in classical cadherins. In the extracellular EC1 domain, the novel cadherin contains an AAL sequence in place of the HAV sequence motif representing the common cell adhesion recognition sequence of E-, P-, and N-cadherin. In contrast to the conserved cytoplasmic domain of classical cadherins with a length of 150-160 amino acid residues, that of the novel cadherin has only 18 amino acids. Examination of transfected S2 cells showed that despite these structural differences, this cadherin mediates intercellular adhesion in a Ca(2+)-dependent manner. The novel cadherin is solely expressed in liver and intestine and was, hence, assigned the name LI-cadherin. In these tissues, LI- cadherin is localized to the basolateral domain of hepatocytes and enterocytes. These results suggest that LI-cadherin represents a new cadherin subtype and may have a role in the morphological organization of liver and intestine.  相似文献   

10.
Regulation of cadherin-mediated adhesion can occur rapidly at the cell surface. To understand the mechanism underlying cadherin regulation, it is essential to elucidate the homophilic binding mechanism that underlies all cadherin-mediated functions. Therefore, we have investigated the structural and functional properties of the extracellular segment of Xenopus C-cadherin using a purified, recombinant protein (CEC 1-5). CEC 1-5 supported adhesion of CHO cells expressing C-cadherin. The extracellular segment was also capable of mediating aggregation of microspheres. Chemical cross-linking and gel filtration revealed that CEC 1-5 formed dimers in the presence as well as absence of calcium. Analysis of the functional activity of purified dimers and monomers demonstrated that dimers retained substantially greater homophilic binding activity than monomers. These results demonstrate that lateral dimerization is necessary for homophilic binding between cadherin extracellular segments and suggest multiple potential mechanisms for the regulation of cadherin activity. Since the extracellular segment alone possessed significant homophilic binding activity, the adhesive activity of the extracellular segment in a cellular context was analyzed. The adhesion of CHO cells expressing a truncated version of C-cadherin lacking the cytoplasmic tail was compared to cells expressing the wild-type C-cadherin using a laminar flow assay on substrates coated with CEC 1-5. CHO cells expressing the truncated C-cadherin were able to attach to CEC 1-5 and to resist detachment by low shear forces, demonstrating that tailless C-cadherin can mediate basic, weak adhesion of CHO cells. However, cells expressing the truncated C-cadherin did not exhibit the complete adhesive activity of cells expressing wild-type C-cadherin. Cells expressing wild-type C-cadherin remained attached to CEC 1-5 at high shear forces, while cells expressing the tailless C-cadherin did not adhere well at high shear forces. These results suggest that there may be two states of cadherin-mediated adhesion. The first, relatively weak state can be mediated through interactions between the extracellular segments alone. The second strong adhesive state is critically dependent on the cytoplasmic tail.  相似文献   

11.
《The Journal of cell biology》1987,105(6):2501-2510
Cadherins are a family of cell-cell adhesion molecules and are divided into subclasses with distinct adhesive specificities and tissue distribution. Here we examined the distribution of cadherins at contact sites between cells expressing the same or different cadherin subclasses. Each cadherin was concentrated at the boundary between cells expressing an identical cadherin subclass, irrespective of the cell types connected. However, such localization decreased or disappeared at the boundary between cells containing different cadherin subclasses. We also found that the localization of cadherins precisely coincided with that of actin bundles; both were detected at the apical region of cell sheets. This co-localization was retained even after cells were either treated with cytochalasin D or extracted with the detergent NP40. These results suggest that each cadherin subclass preferentially interacts with its own molecular type at intercellular boundaries, and that cadherin molecules may be associated with actin- based cytoskeletal elements.  相似文献   

12.
In this review, we describe general features of the expression of cadherins in the developing central nervous system (CNS) of vertebrates. In the early neuroepithelium, the expression of several cadherins is restricted to specific regions corresponding to segmental domains. Segmental boundaries often coincide with changes in cadherin expression, subdividing the primordial CNS into different adhesive domains. In the different neuromeric domains, early neurons are generated which differentially express cadherins. In the mantle layer, these early neurons seem to sort out according to which cadherin they express, and they aggregate into various gray matter regions (brain nuclei and cortical lamina and regions). The gray matter structures expressing a given cadherin become connected to one another to form parts of particular functional systems or neuronal circuits. Together, these findings show that cadherins provide a molecular system reflecting both early embryonic and mature nervous system architecture. The possible roles of cadherins in the formation and maintenance of segmental and functional nervous system structures are discussed.  相似文献   

13.
Cadherins, a large family of calcium-dependent adhesion molecules, are critical for intercellular adhesion. While crystallographic structures for several cadherins show clear structural similarities, their relevant adhesive strengths vary and their mechanisms of adhesion between types I and II cadherin subfamilies are still unclear. Here, stretching of cadherins was explored experimentally by atomic force microscopy and computationally by steered molecular dynamics (SMD) simulations, where partial unfolding of the E-cadherin ectodomains was observed. The SMD simulations on strand-swapping cadherin dimers displayed similarity in binding strength, suggesting contributions of other mechanisms to explain the strength differences of cell adhesion in vivo. Systematic simulations on the unfolding of the extracellular domains of type I and II cadherins revealed diverse pathways. However, at the earliest stage, a remarkable similarity in unfolding was observed for the various type I cadherins that was distinct from that for type II cadherins. This likely correlates positively with their distinct adhesive properties, suggesting that the initial forced deformation in type I cadherins may be involved in cadherin-mediated adhesion.

An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:25  相似文献   

14.
Classical cadherins mediate cell-cell adhesion through calcium-dependent homophilic interactions and are activated through cleavage of a prosequence in the late Golgi. We present here the first three-dimensional structure of a classical cadherin prosequence, solved by NMR. The prototypic prosequence of N-cadherin consists of an Ig-like domain and an unstructured C-terminal region. The folded part of the prosequence-termed prodomain-has a striking structural resemblance to cadherin "adhesive" domains that could not have been predicted from the amino acid sequence due to low sequence similarities. Our detailed structural and evolutionary analysis revealed that prodomains are distant relatives of cadherin "adhesive" domains but lack all the features known to be important for cadherin-cadherin interactions. The presence of an additional "nonadhesive" domain seems to make it impossible to engage homophilic interactions between cadherins that are necessary to activate adhesion, thus explaining the inactive state of prodomain-bearing cadherins.  相似文献   

15.
Cell adhesion mediated by type I cadherins involves homophilic "trans" interactions that are thought to be brought about by a strand exchange mechanism involving the N-terminal extracellular domain. Here, we present the high-resolution crystal structure of the N-terminal two domains of human E-cadherin. Comparison of this structure with other type I cadherin structures reveals features that are likely to be critical to facilitate dimerization by strand exchange as well as dimer flexibility. We integrate this structural knowledge to provide a model for type I cadherin adhesive interactions. Intra-molecular docking of the conserved N-terminal "adhesion arm" into the acceptor pocket in monomeric E-cadherin appears largely identical to inter-molecular docking of the adhesion arm in adhesive trans dimers. A strained conformation of the adhesion arm in the monomer, however, may create an equilibrium between "open" and "closed" forms that primes the cadherin for formation of adhesive interactions, which are then stabilized by additional dimer-specific contacts. By contrast, in type II cadherins, strain in the adhesion arm appears absent and a much larger surface area is involved in trans adhesion, which may compensate the activation energy required to peel off the intra-molecularly docked arm. It seems that evolution has selected slightly different adhesion mechanisms for type I and type II cadherins.  相似文献   

16.
Cadherins are single-pass transmembrane proteins that, through their homophilic specificity, function in selective cell adhesion and sorting. They have a modular structure that includes an ectodomain composed of tandem 'cadherin domains,' which have a beta-sandwich topology similar to that of immunoglobulin domains. Some early experiments suggest that, for the 'classical' cadherins, the adhesive specificity is encoded in the membrane-distal amino-terminal cadherin domain. Here, we review these data, and present new data that supports this idea.  相似文献   

17.
《The Journal of cell biology》1986,103(6):2649-2658
The Ca2+-dependent cell adhesion molecules, termed cadherins, were previously divided into two subclasses, E- and N-types, with different adhesive specificity. In this study, we identified a novel class of cadherin, termed P-cadherin, using a visceral endoderm cell line PSA5- E. This cadherin was a 118,000-D glycoprotein and distinct from E- and N-cadherins in immunological specificity and molecular mass. In accord with these findings, cells with P-cadherin did not cross-adhere with cells with E-cadherin. P-Cadherin first appeared in developing mouse embryos in the extraembryonic ectoderm and the visceral endoderm at the egg cylinder stage and later was expressed in various tissues. The placenta and the uterine decidua most abundantly expressed this cadherin. The expression of P-cadherin was transient in many tissues, and its permanent expression was limited to certain tissues such as the epidermis, the mesothelium, and the corneal endothelium. When the tissue distribution of P-cadherin was compared with that of E-cadherin, we found that: each cadherin displayed a unique spatio-temporal pattern of expression; P-cadherin was co-expressed with E-cadherin in local regions of various tissues; and onset or termination of expression of P- cadherin was closely associated with connection or segregation of cell layers, as found with other cadherins. These results suggested that differential expression of multiple classes of cadherins play a role in implantation and morphogenesis of embryos by providing cells with heterogenous adhesive specificity.  相似文献   

18.
Cadherins are a large family of single-pass transmembrane proteins principally involved in Ca2+-dependent homotypic cell adhesion. The cadherin molecules comprise three domains, the intracellular domain, the transmembrane domain and the extracellular domain, and form large complexes with a vast array of binding partners (including cadherin molecules of the same type in homophilic interactions and cellular protein catenins), orchestrating biologically essential extracellular and intracellular signalling processes. While current, contrasting models for classic cadherin homophilic interaction involve varying numbers of specific repeats found in the extracellular domain, the structure of the domain itself clearly remains the main determinant of cell stability and binding specificity. Through intracellular interactions, cadherin enhances its adhesive properties binding the cytoskeleton via cytoplasmic associated factors alpha- catenin, beta-catenin and p120ctn. Recent structural studies on classic cadherins and these catenin molecules have provided new insight into the essential mechanisms underlying cadherin-mediated cell interaction and catenin-mediated cellular signalling. Remarkable structural diversity has been observed in beta-catenin recognition of other cellular factors including APC, Tcf and ICAT, proteins that contribute to or compete with cadherin/catenin functioning.  相似文献   

19.
A large number of cadherins and cadherin-related proteins are expressed in different tissues of a variety of multicellular organisms. These proteins share one property: their extracellular domains consist of multiple repeats of a cadherin-specific motif. A recent structure study has shown that the cadherin repeats roughly corresponding to the folding unit of the extracellular domains. The members of the cadherin superfamily are roughly classified into two groups, classical type cadherins proteins and protocadherin type according to their structural properties. These proteins appear to be derived from a common ancestor that might have cadherin repeats similar to those of the current protocadherins, and to have common functional properties. Among various cadherins, E-cadherin was the first to be identified as a Ca2+-dependent homophilic adhesion protein. Recent knockout mice experiments have proven its biological role, but there are still several puzzling unsolved properties of the cell adhesion activity. Other members of cadherin superfamily show divergent properties and many lack some of the expected properties of cell adhesion protein. Since recent studies of various adhesion proteins reveal that they are involved in different signal transduction pathways, the idea that the new members of cadherin superfamily may participate in more general cell-cell interaction processes including signal transduction is an intriguing hypothesis. The cadherin superfamily is structurally divergent and possibly functionally divergent as well. © 1996 Wiley-Liss, Inc.  相似文献   

20.
The classical cadherins, definitive proteins of the cadherin superfamily, are characterized functionally by their ability to mediate calcium-dependent cell aggregation in vitro. To test hypothetical mechanisms of adhesion, we have constructed two mutants of the chicken E-cadherin protein, one with the highly conserved His-Ala-Val (HAV) sequence motif reversed to Val-Ala-His (VAH), the other lacking the first extracellular domain (EC1). The inversion of HAV to VAH has no effect on the capacity of E-cadherin to mediate adhesion. Deletion of EC1 completely eliminates the ability of E-cadherin to mediate homophilic adhesion, but the deletion mutant is capable of adhering heterophilically to both unmutated E-cadherin and to the HAV/VAH mutant. These results demonstrate that the conserved HAV sequence motif is not involved in cadherin-mediated adhesion as has been suggested previously and supports the idea that in the context of the cell surface, cadherin-mediated cell-cell adhesion involves an interaction of EC1 with other domains of the cadherin extracellular moiety and not the "linear zipper" model, which posits trans interactions only between EC1 on apposing cell surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号