首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The action of cytochalasins, actin-disrupting agents on human Kv1.5 channel (hKv1.5) stably expressed in Ltk cells was investigated using the whole cell patch-clamp technique. Cytochalasin B inhibited hKv1.5 currents rapidly and reversibly at +60 mV in a concentration-dependent manner with an IC50 of 4.2 µM. Cytochalasin A, which has a structure very similar to cytochalasin B, inhibited hKv1.5 (IC50 of 1.4 µM at +60 mV). Pretreatment with other actin filament disruptors cytochalasin D and cytochalasin J, and an actin filament stabilizing agent phalloidin had no effect on the cytochalasin B-induced inhibition of hKv1.5 currents. Cytochalasin B accelerated the decay rate of inactivation for the hKv1.5 currents. Cytochalasin B-induced inhibition of the hKv1.5 channels was voltage dependent with a steep increase over the voltage range of the channel's opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. Cytochalasin B produced no significant effect on the steady-state activation or inactivation curves. The rate constants for association and dissociation of cytochalasin B were 3.7 µM/s and 7.5 s–1, respectively. Cytochalasin B produced a use-dependent inhibition of hKv1.5 current that was consistent with the slow recovery from inactivation in the presence of the drug. Cytochalasin B (10 µM) also inhibited an ultrarapid delayed rectifier K+ current (IK,ur) in human atrial myocytes. These results indicate that cytochalasin B primarily blocks activated hKv1.5 channels and endogenous IK,ur in a cytoskeleton-independent manner as an open-channel blocker. voltage-gated K+ channel; heart; open channel block  相似文献   

2.
The perforated-patch techniquewas used to measure membrane currents in smooth muscle cells from sheepurethra. Depolarizing pulses evoked large transient outward currentsand several components of sustained current. The transient current anda component of sustained current were blocked by iberiotoxin, penitremA, and nifedipine but were unaffected by apamin or 4-aminopyridine,suggesting that they were mediated by large-conductanceCa2+-activated K+ (BK) channels. When the BKcurrent was blocked by exposure to penitrem A (100 nM) andCa2+-free bath solution, there remained a voltage-sensitiveK+ current that was moderately sensitive to blockade withtetraethylammonium (TEA; half-maximal effective dose = 3.0 ± 0.8 mM) but not 4-aminopyridine. Penitrem A (100 nM) increasedthe spike amplitude and plateau potential in slow waves evoked insingle cells, whereas addition of TEA (10 mM) further increased theplateau potential and duration. In conclusion, bothCa2+-activated and voltage-dependent K+currents were found in urethral myocytes. Both of these currents arecapable of contributing to the slow wave in these cells, suggesting that they are likely to influence urethral tone under certain conditions.

  相似文献   

3.
TheNa+/Ca2+ exchanger participates inCa2+ homeostasis in a variety of cells and has a key rolein cardiac muscle physiology. We studied in this work the exchanger ofamphibian skeletal muscle, using both isolated inside-out transversetubule vesicles and single muscle fibers. In vesicles, increasingextravesicular (intracellular) Na+ concentrationcooperatively stimulated Ca2+ efflux (reverse mode), withthe Hill number equal to 2.8. In contrast to the stimulation of thecardiac exchanger, increasing extravesicular (cytoplasmic)Ca2+ concentration ([Ca2+]) inhibited thisreverse activity with an IC50 of 91 nM. Exchanger-mediated currents were measured at 15°C in single fibers voltage clamped at90 mV. Photolysis of a cytoplasmic caged Ca2+ compoundactivated an inward current (forward mode) of 23 ± 10 nA(n = 3), with an average current density of 0.6 µA/µF. External Na+ withdrawal generated an outwardcurrent (reverse mode) with an average current density of 0.36 ± 0.17 µA/µF (n = 6) but produced a minimal increasein cytosolic [Ca2+]. These results suggest that, inskeletal muscle, the main function of the exchanger is to removeCa2+ from the cells after stimulation.

  相似文献   

4.
Each skeletal muscle of the body contains a unique composition of "fast" and "slow" muscle fibers, each of which is specialized for certain challenges. This composition is not static, and the muscle fibers are capable of adapting their molecular composition by altered gene expression (i.e., fiber type conversion). Whereas changes in the expression of contractile proteins and metabolic enzymes in the course of fiber type conversion are well described, little is known about possible adaptations in the electrophysiological properties of skeletal muscle cells. Such adaptations may involve changes in the expression and/or function of ion channels. In this study, we investigated the effects of fast-to-slow fiber type conversion on currents via voltage-gated Na+ channels in the C2C12 murine skeletal muscle cell line. Prolonged treatment of cells with 25 nM of the Ca2+ ionophore A-23187 caused a significant shift in myosin heavy chain isoform expression from the fast toward the slow isoform, indicating fast-to-slow fiber type conversion. Moreover, Na+ current inactivation was significantly altered. Slow inactivation less strongly inhibited the Na+ currents of fast-to-slow fiber type-converted cells. Compared with control cells, the Na+ currents of converted cells were more resistant to block by tetrodotoxin, suggesting enhanced relative expression of the cardiac Na+ channel isoform Nav1.5 compared with the skeletal muscle isoform Nav1.4. These results imply that fast-to-slow fiber type conversion of skeletal muscle cells involves functional adaptation of their electrophysiological properties. muscle plasticity; myosin heavy chain expression; sodium channel expression  相似文献   

5.
Malignant human gliomas express an amiloride-sensitive Na+ conductance   总被引:2,自引:0,他引:2  
Human astrocytoma cells were studied using whole cellpatch-clamp recording. An inward, amiloride-sensitiveNa+ current was identified in fourcontinuous cell lines originally derived from human glioblastoma cells(CH235, CRT, SKMG-1, and U251-MG) and in three primary cultures ofcells obtained from glioblastoma multiforme tumors (up to 4 passages).In addition, cells freshly isolated from a resected medulloblastomatumor displayed this same characteristic inward current. In contrast,amiloride-sensitive currents were not observed in normal humanastrocytes, low-grade astrocytomas, or juvenile pilocytic astrocytomas.The only amiloride-sensitive Na+channels thus far molecularly identified in brain are the brain Na+ channels (BNaCs). RT-PCRanalyses demonstrated the presence of mRNA for either BNaC1 or BNaC2 inthese tumors and in normal astrocytes. These results indicate that thefunctional expression of amiloride-sensitive Na+ currents is a characteristicfeature of malignant brain tumor cells and that this pathway may be apotentially useful target for therapeutic intervention.

  相似文献   

6.
Role of HERG-like K+ currents in opossum esophageal circular smooth muscle   总被引:4,自引:0,他引:4  
An inwardlyrectifying K+ conductance closelyresembling the human ether-a-go-go-related gene (HERG) current wasidentified in single smooth muscle cells of opossum esophageal circularmuscle. When cells were voltage clamped at 0 mV, in isotonicK+ solution (140 mM), stephyperpolarizations to 120 mV in 10-mV increments resulted inlarge inward currents that activated rapidly and then declined slowly(inactivated) during the test pulse in a time- and voltage- dependentfashion. The HERG K+ channelblockers E-4031 (1 µM), cisapride (1 µM), andLa3+ (100 µM) strongly inhibitedthese currents as did millimolar concentrations ofBa2+. Immunoflourescence stainingwith anti-HERG antibody in single cells resulted in punctate stainingat the sarcolemma. At membrane potentials near the resting membranepotential (50 to 70 mV), thisK+ conductance did not inactivatecompletely. In conventional microelectrode recordings, both E-4031 andcisapride depolarized tissue strips by 10 mV and also induced phasiccontractions. In combination, these results provide direct experimentalevidence for expression of HERG-likeK+ currents in gastrointestinalsmooth muscle cells and suggest that HERG plays an important role inmodulating the resting membrane potential.

  相似文献   

7.
Patch-clampstudies of mammalian skeletal muscleNa+ channels are commonly done atsubphysiological temperatures, usually room temperature. However, atsubphysiological temperatures, mostNa+ channels are inactivated atthe cell resting potential. This study examined the effects oftemperature on fast and slow inactivation ofNa+ channels to determine iftemperature changed the fraction of Na+ channels that were excitableat resting potential. The loose patch voltage clamp recordedNa+ currents(INa) in vitroat 19, 25, 31, and 37°C from the sarcolemma of rat type IIbfast-twitch omohyoid skeletal muscle fibers. Temperature affected thefraction of Na+ channels that wereexcitable at the resting potential. At 19°C, only 30% of channelswere excitable at the resting potential. In contrast, at 37°C, 93%of Na+ channels were excitable atthe resting potential. Temperature did not alter the resting potentialor the voltage dependencies of activation or fast inactivation.INa available atthe resting potential increased with temperature because thesteady-state voltage dependence of slow inactivation shifted in adepolarizing direction with increasing temperature. The membranepotential at which half of the Na+channels were in the slow inactivated state was shifted by +16 mV at37°C compared with 19°C. Consequently, the low availability ofexcitable Na+ channels atsubphysiological temperatures resulted from channels being in the slow,inactivated state at the resting potential.

  相似文献   

8.
We have clonedand functionally characterized the human Na+-dependenthigh-affinity dicarboxylate transporter (hNaDC3) from placenta. ThehNaDC3 cDNA codes for a protein of 602 amino acids with 12 transmembrane domains. When expressed in mammalian cells, the clonedtransporter mediates the transport of succinate in the presence ofNa+ [concentration of substrate necessary for half-maximaltransport (Kt) for succinate = 20 ± 1 µM]. Dimethylsuccinate also interacts with hNaDC3. TheNa+-to-succinate stoichiometry is 3:1 and concentration ofNa+ necessary for half-maximal transport(KNa+0.5) is 49 ± 1 mM as determined by uptake studies withradiolabeled succinate. When expressed in Xenopuslaevis oocytes, hNaDC3 induces Na+-dependent inwardcurrents in the presence of succinate and dimethylsuccinate. At amembrane potential of 50 mV,KSuc0.5 is 102 ± 20 µM andKNa+0.5 is 22 ± 4 mM as determined by the electrophysiological approach. Simultaneous measurements of succinate-evoked charge transfer andradiolabeled succinate uptake in hNaDC3-expressing oocytes indicate acharge-to-succinate ratio of 1:1 for the transport process, suggestinga Na+-to-succinate stoichiometry of 3:1. pH titration ofcitrate-induced currents shows that hNaDC3 accepts preferentially thedivalent anionic form of citrate as a substrate. Li+inhibits succinate-induced currents in the presence of Na+.Functional analysis of rat-human and human-rat NaDC3 chimeric transporters indicates that the catalytic domain of the transporter lies in the carboxy-terminal half of the protein. The humanNaDC3 gene is located on chromosome20q12-13.1, as evidenced by fluorescent in situ hybridization. Thegene is >80 kbp long and consists of 13 exons and 12 introns.

  相似文献   

9.
Enterochromaffin-like (ECL) cells are histamine-containingendocrine cells in the gastric mucosa that maintain a negative membranepotential of about 50 mV, largely due to voltage-gated K+ currents [D. F. Loo, G. Sachs, and C. Prinz. Am. J. Physiol. 270 (Gastrointest Liver Physiol. 33):G739-G745, 1996]. The current study investigated thepresence of voltage-gated Ca2+channels in single ECL cells. ECL cells were isolated from rat fundicmucosa by elutriation, density gradient centrifugation, and primaryculture to a purity >90%. Voltage-gatedCa2+ currents were measured insingle ECL cells using the whole cell configuration of the patch-clamptechnique. Depolarization-activated currents were recorded in thepresence of Na+ orK+ blocking solutions and additionof 20 mM extracellular Ca2+. ECLcells showed inward currents in response to voltage steps that wereactivated at a test potential of around 20 mV with maximalinward currents observed at +20 mV and 20 mM extracellular Ca2+. The inactivation rate of thecurrent decreased with increasingly negative holding potentials and wastotally abolished at a holding potential of 30 mV. Addition ofextracellular 20 mM Ba2+ insteadof 20 mM Ca2+ increased thedepolarization-induced current and decreased the inactivation rate. Theinward current was fully inhibited by the specific L-typeCa2+ channel inhibitor verapamil(0.2 mM) and was augmented by the L-typeCa2+ channel activator BAY K 8644 (0.07 mM). We conclude that depolarization activateshigh-voltage-activated Ca2+channels in ECL cells. Activation characteristics,Ba2+ effects, and pharmacologicalresults imply the presence of L-type Ca2+ channels, whereasinactivation kinetics suggest the presence of additional N-typechannels in rat gastric ECL cells.

  相似文献   

10.
Weak channel blocker-induced noise analysis wasused to determine the way in which the steroids aldosterone andcorticosterone stimulated apical membraneNa+ entry into the cells oftissue-cultured A6 epithelia. Among groups of tissues grown on avariety of substrates, in a variety of growth media, and with cells atpassages 73-112, the steroidsstimulated both amiloride-sensitive and amiloride-insensitiveNa+ transport as measured byshort-circuit currents in chambers perfused with either growth mediumor a Ringer solution. From baseline rates of blocker-sensitiveshort-circuit current between 2 and 7 µA/cm2, transport was stimulatedabout threefold in all groups of experiments. Single channel currentsaveraged near 0.3 pA (growth medium) and 0.5 pA (Ringer) and weredecreased 6-20% from controls by steroid due to the expecteddecreases of fractional transcellular resistance. Irrespective ofbaseline transport rates, the steroids in all groups of tissuesstimulated transport by increase of the density of blocker-sensitiveepithelial Na+ channels (ENaCs).Channel open probability was the same in control and stimulatedtissues, averaging ~0.3 in all groups of tissues. Accordingly,steroid-mediated increases of open channel density responsible forstimulation of Na+ transport aredue to increases of the apical membrane pool of functional channels andnot their open probability.

  相似文献   

11.
The role of Na+/Ca2+ exchange inregulating intracellular Ca2+ concentration([Ca2+]i) in isolated smooth muscle cellsfrom the guinea pig urinary bladder was investigated. Incrementalreduction of extracellular Na+ concentration resulted in agraded rise of [Ca2+]i; 50-100 µMstrophanthidin also increased [Ca2+]i. Asmall outward current accompanied the rise of[Ca2+]i in low-Na+ solutions(17.1 ± 1.8 pA in 29.4 mM Na+). The quantity ofCa2+ influx through the exchanger was estimated from thecharge carried by the outward current and was ~30 times that which isnecessary to account for the rise of [Ca2+]i,after correction was made for intracellular Ca2+ buffering.Ca2+ influx through the exchanger was able to loadintracellular Ca2+ stores. It is concluded that the levelof resting [Ca2+]i is not determined by theexchanger, and under resting conditions (membrane potential 50 to60 mV), there is little net flux through the exchanger. However, asmall rise of intracellular Na+ concentration would besufficient to generate significant net Ca2+ influx.

  相似文献   

12.
The whole-cell patch-clamp technique was used to study and comparethe characteristics of K+-and Na+-transport processes acrossthe plasma membrane in two types of protoplast isolated fromNaCl-adapted and -unadapted cells of tobacco (Nicotiana tabacumL. cv. Bright Yellow-2) in suspension culture. In both typesof protoplast, with 100 mM KCl in the bathing solution and inthe pipette solution, depolarization of the plasma membranefrom the holding potential of 0 mV to a positive potential resultedin a relatively large outward current which increased with increasingpositive potential, whereas hyperpolarization to negative potentialsup to –100 mV resulted in only a small inward current.The outward current activated by depolarization was predominantlycarried by K+ ions through K+ channels. Na+ ions also had afinite ability to pass through these K+ channels. The outwardK+ and Na+ currents of the NaCl-adapted cells were considerablysmaller than those of the NaCl-unadapted cells. These resultssuggest that adaptation to salinity results in reduced permeabilityof the plasma membrane to both K+ and Na+ ions. 1Present address: Research Laboratory of Applied Biochemistry,Tanabe Seiyaku Co., Ltd., 16-89, Kashima 3-chome, Yodogawa-ku,Osaka, 532 Japan  相似文献   

13.
To clarifyinteractions between the cytoskeleton and activity of L-typeCa2+ (CaL) channels in vascular smooth muscle(VSM) cells, we investigated the effect of disruption of actinfilaments and microtubules on the L-type Ca2+ current[IBa(L)] of cultured VSM cells (A7r5 cellline) using whole cell voltage clamp. The cells were exposed to eachdisrupter for 1 h and then examined electrophysiologically andmorphologically. Results of immunostaining using anti--actin andanti--tubulin antibodies showed that colchicine disrupted both actinfilaments and microtubules, cytochalasin D disrupted only actinfilaments, and nocodazole disrupted only microtubules.IBa(L) was greatly reduced in cells that wereexposed to colchicine or cytochalasin D but not to nocodazole.Colchicine even inhibited IBa(L) by about 40%when the actin filaments were stabilized by phalloidin or when thecells were treated with phalloidin plus taxol to stabilize bothcytoskeletal components. These results suggest that colchicine mustalso cause some inhibition of IBa(L) due toanother unknown mechanism, e.g., a direct block of CaLchannels. In summary, actin filament disruption of VSM cells inhibitsCaL channel activity, whereas disrupting the microtubulesdoes not.

  相似文献   

14.
Mechanism of Postinhibitory Rebound in Molluscan Neurons   总被引:1,自引:1,他引:0  
Postinhibitory rebound (PIR) is an intrinsic property of manyneurons but the underlying mechanism is not well understood.We studied PIR and its relationship to spike adaptation in B-cellsisolated from the buccal ganglia of Aplysia. These neurons exhibitPIR following inhibitory synaptic input and following directmembrane hyperpolarization. Hyperpolarizing and depolarizingvoltage clamp pulses from the resting potential evoke slow changesin membrane current that persist in the form of tail currentsfollowing the pulses. A subtraction method was used to isolateslow tail currents for study. Current-voltage measurements indicatethat slow outward tail currents following depolarizing pulsesresult from increases in membrane conductance, while inwardtail currents following hyperpolarizations to –50 and–60 mV result from conductance decreases. The reversalpotential of both outward and inward tail current is between–60 and –70 mV. Tail currents activated by pulsesmore positive than –60 mV are sensitive to the externalK+ concentration and blocked by injection of Cs+ and TEA. WhenCa2+ influx is prevented by bathing cells in Ca2+ free salineor by adding Co2+ or Ni2+, the tail currents are reduced buta significant fraction of the current is insensitive to thesetreatments. More negative conditioning pulses activate a secondcomponent of inward tail current that is weakly sensitive toK+ but more strongly effected by substitution of N-methyl glucamineor Li+ for external Na+. We conclude that both PIR and adaptationresult from slow changes in a voltage dependent, non-inactivatingK+ conductance that is active at voltages near the resting potentialand is not tightly coupled to Ca2+ influx. In addition, a secondinward current is activated by large hyperpolarizing pulsesthat results from an increase in Na+ and K+ conductance. Thissecond process is likely to contribute to PIR under particularcircumstances.  相似文献   

15.
Weinvestigated the inactivation process of macroscopic cardiac L-typeCa2+ channel currents using the whole cell patch-clamptechnique with Na+ as the current carrier. The inactivationprocess of the inward currents carried by Na+ through thechannel consisted of two components >0 mV. The time constant of thefaster inactivating component (30.6 ± 2.2 ms at 0 mV) decreasedwith depolarization, but the time constant of the slower inactivatingcomponent (489 ± 21 ms at 0 mV) was not significantly influencedby the membrane potential. The inactivation process in the presence ofisoproterenol (100 nM) consisted of a single component (538 ± 60 ms at 0 mV). A protein kinase inhibitor, H-89, decreased the currentsand attenuated the effects of isoproterenol. In the presence of cAMP(500 µM), the inactivation process consisted of a single slowcomponent. We propose that the faster inactivating component representsa kinetic of the dephosphorylated or partially phosphorylated channel,and phosphorylation converts the kinetics into one with a differentvoltage dependency.

  相似文献   

16.
Aldosterone induces ras methylation in A6 epithelia   总被引:1,自引:0,他引:1  
Aldosterone increases Na+ reabsorption by renalepithelial cells: the acute actions (<4 h) appear to be promoted byprotein methylation. This paper describes the relationship betweenprotein methylation and aldosterone's action and describesaldosterone-mediated targets for methylation in cultured renal cells(A6). Aldosterone increases protein methylation from 7.90 ± 0.60 to 20.1 ± 0.80 methyl ester cpm/µg protein. Aldosteronestimulates protein methylation by increasing methyltransferase activityfrom 14.0 ± 0.64 in aldosterone-depleted cells to 31.8 ± 2.60 methyl ester cpm/µg protein per hour in aldosterone-treated cells. Three known methyltransferase inhibitors reduce thealdosterone-induced increase in methyltransferase activity. One ofthese inhibitors, the isoprenyl-cysteine methyltransferase-specificinhibitor,S-trans,trans-farnesylthiosalicylic acid, completely blocks aldosterone-induced protein methylation and also aldosterone-induced short-circuit current. Aldosterone inducesprotein methylation in two molecular weight ranges: near 90 kDa andaround 20 kDa. The lower molecular weight range is the weight of smallG proteins, and aldosterone does increase both Ras protein 1.6-fold andRas methylation almost 12-fold. Also, Ras antisense oligonucleotidesreduce the activity of Na+ channels by about fivefold. Weconclude that 1) protein methylation is essential foraldosterone-induced increases in Na+ transport;2) one target for methylation is p21ras; and3) inhibition of Ras expression or Ras methylation inhibits Na+ channel activity.

  相似文献   

17.
Phospholamban (PLB) inhibits the sarcoplasmic reticulum (SR)Ca2+-ATPase, and this inhibition is relieved bycAMP-dependent protein kinase (PKA)-mediated phosphorylation. The roleof PLB in regulating Ca2+ release throughryanodine-sensitive Ca2+ release channels, measured asCa2+ sparks, was examined using smooth muscle cells ofcerebral arteries from PLB-deficient ("knockout") mice(PLB-KO). Ca2+ sparks were monitored opticallyusing the fluorescent Ca2+ indicator fluo 3 or electricallyby measuring transient large-conductance Ca2+-activatedK+ (BK) channel currents activated by Ca2+sparks. Basal Ca2+ spark and transient BK current frequencywere elevated in cerebral artery myocytes of PLB-KO mice. Forskolin, anactivator of adenylyl cyclase, increased the frequency ofCa2+ sparks and transient BK currents in cerebral arteriesfrom control mice. However, forskolin had little effect on thefrequency of Ca2+ sparks and transient BK currents fromPLB-KO cerebral arteries. Forskolin or PLB-KO increased SRCa2+ load, as measured by caffeine-induced Ca2+transients. This study provides the first evidence that PLB is criticalfor frequency modulation of Ca2+ sparks and associated BKcurrents by PKA in smooth muscle.

  相似文献   

18.
Three distinctmammalianNa+/Ca2+exchangers have been cloned: NCX1, NCX2, and NCX3. We have undertaken adetailed functional comparison of these three exchangers. Eachexchanger was stably expressed at high levels in the plasma membranesof BHK cells. Na+/Ca2+exchange activity was assessed using three different complementary techniques: Na+ gradient-dependent45Ca2+uptake into intact cells, Na+gradient-dependent45Ca2+uptake into membrane vesicles isolated from the transfected cells, andexchange currents measured using giant patches of excised cellmembrane. Apparent affinities for the transported ionsNa+ andCa2+ were markedly similar for thethree exchangers at both membrane surfaces. Likewise, generally similarresponses to changes in pH, chymotrypsin treatment, and application ofvarious inhibitors were obtained. Depletion of cellular ATP inhibitedNCX1 and NCX2 but did not affect the activity of NCX3. Exchangeactivities of NCX1 and NCX3 were modestly increased by agents thatactivate protein kinases A and C. All exchangers were regulated byintracellular Ca2+. NCX1-inducedexchange currents were especially large in excised patches and, likethe native myocardial exchanger, were stimulated by ATP. Results may beinfluenced by our choice of expression system and specific splicevariants, but, overall, the three exchangers appear to have verysimilar properties.

  相似文献   

19.
In fura 2-loaded N1E-115 cells, regulationof intracellular Ca2+ concentration([Ca2+]i) following a Ca2+ loadinduced by 1 µM thapsigargin and 10 µM carbonylcyanidep-trifluoromethyoxyphenylhydrazone (FCCP) wasNa+ dependent and inhibited by 5 mM Ni2+. Incells with normal intracellular Na+ concentration([Na+]i), removal of bath Na+,which should result in reversal of Na+/Ca2+exchange, did not increase [Ca2+]i unlesscell Ca2+ buffer capacity was reduced. When N1E-115 cellswere Na+ loaded using 100 µM veratridine and 4 µg/mlscorpion venom, the rate of the reverse mode of theNa+/Ca2+ exchanger was apparently enhanced,since an ~4- to 6-fold increase in [Ca2+]ioccurred despite normal cell Ca2+ buffering. In SBFI-loadedcells, we were able to demonstrate forward operation of theNa+/Ca2+ exchanger (net efflux ofCa2+) by observing increases (~ 6 mM) in[Na+]i. These Ni2+ (5 mM)-inhibited increases in [Na+]i could onlybe observed when a continuous ionomycin-induced influx ofCa2+ occurred. The voltage-sensitive dyebis-(1,3-diethylthiobarbituric acid) trimethine oxonol was used tomeasure changes in membrane potential. Ionomycin (1 µM) depolarizedN1E-115 cells (~25 mV). This depolarization was Na+dependent and blocked by 5 mM Ni2+ and 250-500 µMbenzamil. These data provide evidence for the presence of anelectrogenic Na+/Ca2+ exchanger that is capableof regulating [Ca2+]i after release ofCa2+ from cell stores.

  相似文献   

20.
The cardiac Ca2+-independent transient outward K+ current (Ito), a major repolarizing ionic current, is markedly affected by Cl substitution and anion channel blockers. We reexplored the mechanism of the action of anions on Ito by using whole cell patch-clamp in single isolated rat cardiac ventricular myocytes. The transient outward current was sensitive to blockade by 4-aminopyridine (4-AP) and was abolished by Cs+ substitution for intracellular K+. Replacement of most of the extracellular Cl with less permeant anions, aspartate (Asp) and glutamate (Glu), markedly suppressed the current. Removal of external Na+ or stabilization of F-actin with phalloidin did not significantly affect the inhibitory action of less permeant anions on Ito. In contrast, the permeant Cl substitute Br did not markedly affect the current, whereas F substitution for Cl induced a slight inhibition. The Ito elicited during Br substitution for Cl was also sensitive to blockade by 4-AP. The ability of Cl substitutes to induce rightward shifts of the steady-state inactivation curve of Ito was in the following sequence: NO3 > Cl Br > gluconate > Glu > Asp. Depolymerization of actin filaments with cytochalasin D (CytD) induced an effect on the steady-state inactivation of Ito similar to that of less permeant anions. Fluorescent phalloidin staining experiments revealed that CytD-pretreatment significantly decreased the intensity of FITC-phalloidin staining of F-actin, whereas Asp substitution for Cl was without significant effect on the intensity. These results suggest that the Ito channel is modulated by anion channel(s), in which the actin cytoskeleton may be implicated. transient outward potassium current; anion channel; actin cytoskeleton; myocyte; potassium ion  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号