首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Conditions are described for an assay that allows the percent inhibition of α-bungarotoxin binding to acetylcholine receptors by antisera and monovalent antigen-binding fragments of antibody molecules (Fab) to be determined. Anti-Torpedo californica acetylcholine-receptor antisera, prepared in New Zealand White rabbits and Lewis rats, were tested for the ability to inhibit [125I]-α-bungarotoxin binding to membrane-associated and detergent-solubilized T californica acetylcholine receptors. Similar inhibition studies were performed using rabbit antisera and antigen-binding fragments prepared against each of the four acetylcholine receptor subunits. Antisera and antigen-binding fragments prepared against intact receptor could inhibit a maximum of 50% of the α-bungarotoxin binding to solubilized receptor. The results using monovalent antigen-binding fragments indicated that the inhibition was not due to antibody-mediated aggregation of receptor molecules. Rabbits and rats immunized with receptor denatured by sodium dodecyl sulfate all produced antisera that could bind to nondenatured receptor, but none of these animals developed experimental autoimmune myasthenia gravis. These results suggest that the antigenic determinants present on acetylcholine receptors responsible for induction of experimental auto-immune myasthenia gravis are lost with sodium dodecyl sulfate denaturation. A strong correlation was also observed between the presence of experimental autoimmune myasthenia gravis in rats and rabbits and the ability of the antisera from these animals to inhibit 50% of α-bungarotoxin binding to solubilized acetylcholine receptors.  相似文献   

2.
Acetylcholine receptors were assayed with α-bugarotoxin on embryonic chick skeletal muscle growing in primary cell culture. Toxin was bound specifically to muscle cells and could be competed with D-tubocurarine. Two dissociation constants were obtained by equilibrium binding: 7.2 × 10?9M and 2.7 × 10?7M at 25°C. Two sets of rate constants were also obtained from dissociation kinetics. There are five times more low affinity sites on cells than high affinity sites. The average density of high-affinity receptors is about 200/μm2. A time course of toxin binding to receptors at 37°C vs 25°C in growth medium revealed that under conditions permitting growth and metabolism, toxin bound to cells was lost. The possibility that the growth medium was in-activating toxin molecules was ruled out by showing that unbound toxin molecules in the medium were fully capable of binding to fresh cultures.  相似文献   

3.
Mammalian adenoviruses (AdVs) comprise more than ~350 types including over 100 human (HAdVs) and just three mouse AdVs (MAdVs). While most HAdVs initiate infection by high affinity/avidity binding of their fiber knob (FK) protein to either coxsackievirus AdV receptor (CAR), CD46 or desmoglein (DSG)-2, MAdV-1 (M1) infection requires arginine-glycine-aspartate (RGD) binding integrins. To identify the receptors mediating MAdV infection we generated five novel reporter viruses for MAdV-1/-2/-3 (M1, M2, M3) transducing permissive murine (m) CMT-93 cells, but not B16 mouse melanoma cells expressing mCAR, human (h) CD46 or hDSG-2. Recombinant M1 or M3 FKs cross-blocked M1 and M3 but not M2 infections. Profiling of murine and human cells expressing RGD-binding integrins suggested that αvβ6 and αvβ8 heterodimers are associated with M1 and M3 infections. Ectopic expression of mβ6 in B16 cells strongly enhanced M1 and M3 binding, infection, and progeny production comparable with mαvβ6-positive CMT-93 cells, whereas mβ8 expressing cells were more permissive to M1 than M3. Anti-integrin antibodies potently blocked M1 and M3 binding and infection of CMT-93 cells and hαvβ8-positive M000216 cells. Soluble integrin αvβ6, and synthetic peptides containing the RGDLXXL sequence derived from FK-M1, FK-M3 and foot and mouth disease virus coat protein strongly interfered with M1/M3 infections, in agreement with high affinity interactions of FK-M1/FK-M3 with αvβ6/αvβ8, determined by surface plasmon resonance measurements. Molecular docking simulations of ternary complexes revealed a bent conformation of RGDLXXL-containing FK-M3 peptides on the subunit interface of αvβ6/β8, where the distal leucine residue dips into a hydrophobic pocket of β6/8, the arginine residue ionically engages αv aspartate215, and the aspartate residue coordinates a divalent cation in αvβ6/β8. Together, the RGDLXXL-bearing FKs are part of an essential mechanism for M1/M3 infection engaging murine and human αvβ6/8 integrins. These integrins are highly conserved in other mammals, and may favour cross-species virus transmission.  相似文献   

4.
This method involves the irreversible formation of a complex between 125I-labeled α-bungarotoxin and the acetylcholine receptor in either its membrane-bound or purified state. The separation of the labeled toxin-receptor complex from unreacted toxin is accomplished by chromatography on carboxymethylcellulose cation-exchange resin. The method described was developed to satisfy the following experimental requirements that could not be dealt with in their entirety by employing any of the published methods: (i) the complete recovery of reacted and unreacted species in relatively small volumes; (ii) an efficient and precise isolation of the specific and irreversible 125I-labeled α-bungarotoxin-receptor complex when the complexation reactions demand a large excess of unlabeled α-bungarotoxin for quenching (a 20-fold molar excess of unlabeled over labeled toxin); (iii) this isolation of the toxin-receptor complex allows one to determine the protein concentrations in the samples, a necessity in experiments covering a wide range of receptor concentrations; (iv) a consistent low blank for binding site concentrations ranging over two or three orders of magnitude; (v) simplicity and rapidity.  相似文献   

5.
By occupying specific surface receptors, adenosine and adenosine analogues modulate neutrophil functions; in particular, functional and biochemical studies have shown that A(1) adenosine receptors modulate chemotaxis in response to chemotactic peptides. Until now, the characteristics of the specific agonist binding and the visualization of A(1) receptors in human neutrophils have not been investigated. In the present study, we used the agonist [(3)H] CHA for radioligand binding studies and a CHA-biotin XX probe in order to visualize the A(1) binding sites in human neutrophils, ultrastructurally, by conjugation with colloidal gold-streptavidin. [(3)H] CHA bound A(1) adenosine receptors with selectivity and specificity, although with a low binding capacity. Scatchard analysis showed a Kd value of 1.4 +/- 0.08 nM and a maximum density of binding sites of 7.1 +/- 0.37 fmol/mg of proteins. The good affinity and selectivity of the CHA-biotin XX probe for A(1) adenosine receptors allowed us to visualize them, after conjugation with colloidal gold-streptavidin, as electron-dense gold particles on the neutrophil surface and inside the cell. The internalization of the ligand-receptor complex was followed in a controlled temperature system, and occurred through a receptor-mediated pathway. The kinetics of the intracellular trafficking was fast, taking less than 5 min. These data suggest that the CHA-biotin XX-streptavidin-gold complex is a useful marker for the specific labelling of A(1) binding sites and to follow the intracellular trafficking of these receptors.  相似文献   

6.
The extracellular domain of the nicotinic acetylcholine receptor isoforms formed by three α4 and two β2 subunits ((α4)3(β2)2 nAChR) harbors two high-affinity “canonical” acetylcholine (ACh)-binding sites located in the two α4:β2 intersubunit interfaces and a low-affinity “noncanonical” ACh-binding site located in the α4:α4 intersubunit interface. In this study, we used ACh, cytisine, and nicotine (which bind at both the α4:α4 and α4:β2 interfaces), TC-2559 (which binds at the α4:β2 but not at the α4:α4 interface), and 3-(2-chlorophenyl)-5-(5-methyl-1-(piperidin-4-yl)-1H-pyrrazol-4-yl)isoxazole (CMPI, which binds at the α4:α4 but not at the α4:β2 interface), to investigate the binding and gating properties of CMPI at the α4:α4 interface. We recorded whole-cell currents from Xenopus laevis oocytes expressing (α4)3(β2)2 nAChR in response to applications of these ligands, alone or in combination. The electrophysiological data were analyzed in the framework of a modified Monod–Wyman–Changeux allosteric activation model. We show that CMPI is a high-affinity, high-efficacy agonist at the α4:α4 binding site and that its weak direct activating effect is accounted for by its inability to productively interact with the α4:β2 sites. The data presented here enhance our understanding of the functional contributions of ligand binding at the α4:α4 subunit interface to (α4)3(β2)2 nAChR-channel gating. These findings support the potential use of α4:α4 specific ligands to increase the efficacy of the neurotransmitter ACh in conditions associated with decline in nAChRs activity in the brain.  相似文献   

7.
8.
[125I]-HEAT has proven useful for in vitro autoradiography as a specific alpha 1-adrenergic radioligand. We compared the binding of [125I]-HEAT to membranes from ten brain regions with the densitometric readings of these regions in autoradiographs. There was an excellent correlation between receptor numbers from membrane binding and relative optical densities from the autoradiography. The affinity of HEAT for binding to membranes from various regions was similar. The results of this direct comparison are further evidence that HEAT binds to alpha 1-adrenergic receptors in lightly fixed tissue sections. A further interesting observation is that in regions with a heterogeneous distribution of binding sites, membrane binding may not reflect the presence of a dense local population of receptors.  相似文献   

9.
In situ hybridization histochemistry was used to map the distribution of α2, α3, α4, and β2 nAChR subunit mRNAs throughout the peripheral vestibular system of the rat. The α4 and β2 nAChR subunit genes were co-expressed by populations of primary afferent neurons within Scarpa's ganglion, while there was no expression of the α2, α3, α4, or β2 nAChR subunit genes by type I or type II vestibular hair cells. α-bungarotoxin binding to nAChRs in the vestibular end-organs was primarily limited to the afferent chalices surrounding type I hair cells and the basal aspect of type II hair cells. These data suggest that nAChRs composed of α4 and β2 subunits are localized on afferent chalices innervating the type I vestibular hair cells and that the direct cholinergic efferent innervation of the type II vestibular hair cells utilizes nAChR composed of other subunits.  相似文献   

10.
Type IV collagen is a major component of basement membranes. We have characterized 11 mutations in emb-9, the α1(IV) collagen gene of Caenorhabditis elegans, that result in a spectrum of phenotypes. Five are substitutions of glycines in the Gly-X-Y domain and cause semidominant, temperature-sensitive lethality at the twofold stage of embryogenesis. One is a glycine substitution that causes recessive, non–temperature-sensitive larval lethality. Three putative null alleles, two nonsense mutations and a deletion, all cause recessive, non–temperature-sensitive lethality at the threefold stage of embryogenesis. The less severe null phenotype indicates that glycine substitution containing mutant chains dominantly interfere with the function of other molecules. The emb-9 null mutants do not stain with anti–EMB-9 antisera and show intracellular accumulation of the α2(IV) chain, LET-2, indicating that LET-2 assembly and/or secretion requires EMB-9. Glycine substitutions in either EMB-9 or LET-2 cause intracellular accumulation of both chains. The degree of intracellular accumulation differs depending on the allele and temperature and correlates with the severity of the phenotype. Temperature sensitivity appears to result from reduced assembly/secretion of type IV collagen, not defective function in the basement membrane. Because the dominant interference of glycine substitution mutations is maximal when type IV collagen secretion is totally blocked, this interference appears to occur intracellularly, rather than in the basement membrane. We suggest that the nature of dominant interference caused by mutations in type IV collagen is different than that caused by mutations in fibrillar collagens.  相似文献   

11.
HF is syndrome initiated by a reduction in cardiac function and it is characterized by the activation of compensatory mechanisms. Muscular fatigue and dyspnoea are the more common symptoms in HF; these may be due in part to specific skeletal muscle myopathy characterized by reduced oxidative capacity, a shift from slow fatigue resistant type I to fast less fatigue resistant type II fibers and downregulation of myogenic regulatory factors (MRFs) gene expression that can regulate gene expression of nicotinic acetylcholine receptors (nAChRs). In chronic heart failure, skeletal muscle phenotypic changes could influence the maintenance of the neuromuscular junction morphology and nAChRs gene expression during this syndrome. Two groups of rats were studied: control (CT) and Heart Failure (HF), induced by a single intraperitoneal injection of monocrotaline (MCT). At the end of the experiment, HF was evaluated by clinical signs and animals were sacrificed. Soleus (SOL) muscles were removed and processed for morphological, morphometric and molecular NMJ analyses. Our major finding was an up-regulation in the gene expression of the alpha1 and epsilon subunits of nAChR and a spot pattern of nAChR in SOL skeletal muscle in this acute monocrotaline induced HF. Our results suggest a remodeling of nAChR alpha1 and epsilon subunit during heart failure and may provide valuable information for understanding the skeletal muscle myopathy that occurs during this syndrome.  相似文献   

12.
Proteasome activator 28γ (PA28γ/REGγ) is a member of the 11S family of proteasomal regulators that is constitutively expressed in the nucleus and implicated in various diseases, including certain cancers and systemic lupus erythematosus. Despite years of investigation, how PA28γ functions to stimulate proteasomal protein degradation remains unclear. Alternative hypotheses have been proposed for the molecular mechanism of PA28γ, including the following: (1) substrate selection, (2) allosteric upregulation of the trypsin-like (T-L) site, (3) allosteric inhibition of the chymotrypsin-like (CT-L) and caspase-like (C-L) sites, (4) conversion of the CT-L or C-L sites to new T-L sites, and (5) gate opening alone or in combination with a previous hypothesis. Here, by mechanistically decoupling gating effects from active site effects, we unambiguously demonstrate that WT PA28γ allosterically activates the T-L site. We show PA28γ binding increases the Kcat/Km by 13-fold for T-L peptide substrates while having little-to-no effect on hydrolysis kinetics for CT-L or C-L substrates. Furthermore, mutagenesis and domain swaps of PA28γ reveal that it does not select for T-L peptide substrates through either the substrate entry pore or the distal intrinsically disordered region. We also show that a previously reported point mutation can functionally switch PA28γ from a T-L activating to a gate-opening activator in a mutually exclusive fashion. Finally, using cryogenic electron microscopy, we visualized the PA28γ-proteasome complex at 4.3 Å and confirmed its expected quaternary structure. The results of this study provide unambiguous evidence that PA28γ can function by binding the 20S proteasome to allosterically activate the T-L proteolytic site.  相似文献   

13.
The frequency of Escherichia coli infection has lead to concerns over pathogenic bacteria in our food supply and a demand for therapeutics. Glycolipids on gut cells serve as receptors for the Shiga-like toxin produced by E. coli. Oligosaccharide moiety analogues of these glycolipids can compete with receptors for the toxin, thus acting as antibacterials. An enzymatic synthesis of the P1 trisaccharide (Galα1,4Galβ1,4GlcNAc), one of the oligosaccharide analogues, was assessed in this study. In the proposed synthetic pathway, UDP-glucose was generated from sucrose with an Anabaena sp. sucrose synthase and then converted with an E. coli UDP-glucose 4-epimerase to UDP-galactose. Two molecules of galactose were linked to N-acetylglucosamine subsequently with a Helicobacter pylori β-l,4-galactosyltransferase and a Neisseria meningitidis α-1,4-galactosyltransferase to produce one molecule of P1 trisaccharide. The four enzymes were coexpressed in a single genetically engineered E. coli strain that was then permeabilized and used to catalyze the enzymatic reaction. P1 trisaccharide was accumulated up to 50 mM (5.4 g in a 200-ml reaction volume), with a 67% yield based on the consumption of N-acetylglucosamine. This study provides an efficient approach for the preparative-scale synthesis of P1 trisaccharide with recombinant bacteria.  相似文献   

14.
15.
A yellow-pigmented marine bacterium, designated strain SD-21, was isolated from surface sediments of San Diego Bay, San Diego, Calif., based on its ability to oxidize soluble Mn(II) to insoluble Mn(III, IV) oxides. 16S rRNA analysis revealed that this organism was most closely related to members of the genus Erythrobacter, aerobic anoxygenic phototrophic bacteria within the α-4 subgroup of the Proteobacteria (α-4 Proteobacteria). SD-21, however, has a number of distinguishing phenotypic features relative to Erythrobacter species, including the ability to oxidize Mn(II). During the logarithmic phase of growth, this organism produces Mn(II)-oxidizing factors of ≈250 and 150 kDa that are heat labile and inhibited by both azide and o-phenanthroline, suggesting the involvement of a metalloenzyme. Although the expression of the Mn(II) oxidase was not dependent on the presence of Mn(II), higher overall growth yields were reached in cultures incubated with Mn(II) in the culture medium. In addition, the rate of Mn(II) oxidation appeared to be slower in cultures grown in the light. This is the first report of Mn(II) oxidation within the α-4 Proteobacteria as well as the first Mn(II)-oxidizing proteins identified in a marine gram-negative bacterium.  相似文献   

16.
17.
β-Lactamase inhibitory protein (BLIP) consists of a tandem repeat of αβ domains conjugated by an interdomain loop and can effectively bind and inactivate class A β-lactamases, which are responsible for resistance of bacteria to β-lactam antibiotics. The varied ability of BLIP to bind different β-lactamases and the structural determinants for significant enhancement of BLIP variants with a point mutation are poorly understood. Here, we investigated the conformational dynamics of BLIP upon binding to three clinically prevalent class A β-lactamases (TEM1, SHV1, and PC1) with dissociation constants between subnanomolar and micromolar. Hydrogen deuterium exchange mass spectrometry revealed that the flexibility of the interdomain region was significantly suppressed upon strong binding to TEM1, but was not significantly changed upon weak binding to SHV1 or PC1. E73M and K74G mutations in the interdomain region improved binding affinity toward SHV1 and PC1, respectively, showing significantly increased flexibility of the interdomain region compared to the wild-type and favorable conformational changes upon binding. In contrast, more rigidity of the interfacial loop 135–145 was observed in these BLIP mutants in both free and bound states. Consistently, molecular dynamics simulations of BLIP exhibited drastic changes in the flexibility of the loop 135–145 in all complexes. Our results indicated for the first time that higher flexibility of the interdomain linker, as well as more rigidity of the interfacial loop 135–145, could be desirable determinants for enhancing inhibition of BLIP to class A β-lactamases. Together, these findings provide unique insights into the design of enhanced inhibitors.  相似文献   

18.
19.
20.
Claudins, most of which end in valine at their COOH termini, constitute tight junction (TJ) strands, suggesting that TJ strands strongly attract PDZ-containing proteins. Indeed, ZO-1, -2, and -3, each of which contains three PDZ domains, were shown to directly bind to claudins. Using the yeast two-hybrid system, we identified ZO-1 and MUPP1 (multi-PDZ domain protein 1) as binding partners for the COOH terminus of claudin-1. MUPP1 has been identified as a protein that contains 13 PDZ domains, but it has not been well characterized. In vitro binding assays with recombinant MUPP1 confirmed the interaction between MUPP1 and claudin-1 and identified PDZ10 as the responsible domain for this interaction. A polyclonal antibody specific for MUPP1 was then generated. Immunofluorescence confocal microscopy as well as immunoelectron microscopy with this antibody revealed that in polarized epithelial cells MUPP1 was exclusively concentrated at TJs. Furthermore, in vitro binding and transfection experiments showed that junctional adhesion molecule, another TJ adhesion molecule, also bound to the PDZ9 domain of MUPP1. These findings suggested that MUPP1 is concentrated at TJs in epithelial cells through its binding to claudin and junctional adhesion molecule and that it may function as a multivalent scaffold protein that recruits various proteins to TJs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号