首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of centrifugal force on the growth of cells was examined by exposing the cells of the mouse-human hybridoma X87 line to centrifugal force (100–500 G) for ten minutes twice a day and comparing the static culture with that of unexposed cells. In this experiment, both cell proliferation and specific antibody productivity were independent of the centrifugal effect, and gave the same results as in the case of no exposure to centrifugal force. High density cultivation of the mouse-human hybridoma X87 line was obtained by a perfusion system where the cells were separated from the culture medium by continuous centrifugation. In the serum-free culture, the maximum viable cell density exceeded 107 cells/ml, and monoclonal antibody was stably produced for 37 days. The results in this culture were equivalent to those obtained by intermittent centrifugal cell separation from the culture medium, and separation by gravitational settlement.  相似文献   

2.
The motion of microcarriers inside the horizontally rotating bioreactor was simulated in order to obtain some insight as to how particle motion can affect radial mass transfer. Fluid motion was modeled taking into account momentum transfer induced by particle motion. The force balance on the particle included the viscous drag, inertia, gravitational and buoyant forces. The main characteristics of observed particle motion under conditions of low particle concentration were reproduced by the model. Some implications of particle motion to mass transfer are discussed.  相似文献   

3.
Particle deposition and transport in human airways isfrequently modeled numerically by the Lagrangian approach. Current formulations of such models always require some ad hoc assumptions, and they are computationally expensive. A new drift-flux model is developed and incorporated into a commercial finite volume code. Because it is Eulerian in nature, the model is able to simulate particle deposition patterns, distribution and transport both spatially and temporally. Brownian diffusion, gravitational settling, and electrostatic force are three major particle deposition mechanisms in human airways. The model is validated against analytical results for three deposition mechanisms in a straight tube prior to applying the method to a single bifurcation G3-G4. Two laminar flows with Reynolds numbers 500 and 2000 are simulated. Particle concentration contour deposition pattern, and enhancement factor are evaluated. To demonstrate how the diffusion and settling influence the deposition and transport along the bifurcation, particle sizes from 1 nm to 10 microm are studied. Different deposition mechanisms can be combined into the mass conversation equation. Combined deposition efficiency for the three mechanisms simultaneously was evaluated and compared with two commonly used empirical expressions.  相似文献   

4.
It appears that the literature and logic that the earth's gravity has been one factor in the limitation of cell size, as well as being an important influence on the diversity of cell types and sizes throughout biological evolution. Analysis of the literature reveals an inverse relationship between the centrifugal force needed for intracellular stratification and cell size. The cells studied ranged in size from approximately 1 mm (amphibian eggs, Pelomyxa) to 0.01 mm (erythrocyte, lymphocyte), and g-forces ranged from about 100 g to 100 000 g respectively. Stratification within cell nuclei and organelles requires even greater forces, presumably because of their smaller size. Extrapolation from centrifugal forces to the force of gravity, and from the full stratification to the initial sedimentation of cell parts suggests a hypothesis for the evolutionary survival and existence of cells in the field of gravity. Average cell size results, in part, from the physical equilibrium between the destructive influence of the force of gravity and the protective role of diffusion and the cytoskeleton. At increased forces of gravity the cell size would thus be decreased, whereas at lower gravitational forces and weightlessness cell size would be expected to increase. Mechanisms of protection of giant cells against internal sedimentation are based on protoplasmic motion, thin and elongated shape of the cell body, increased cytoplasmic viscosity, and a reduced range of specific gravity of cell components, relative to the ground-plasm. The nucleolus, due to its higher density, is considered as a possible trigger of mitosis.  相似文献   

5.
The question of how rotation on a horizontal axis clinostat removes plants from the influence of the gravitational stimulus is answered. It is shown that appropriate horizontal axis clinostat rotation restricts the fall of intracellular particles to a quasi-circular path such that the position of the particle remains virtually stationary within cells. The displacement of the path of fall, due to centrifugal force, is then considered, and a method of determining the optimal rotation rate is developed from physical principles. This method selects the rotation rate which minimizes the volume of cytoplasm through which particles pass under the joint influence of centrifugal and gravitational forces. With the recognition that single axis clinostats are ineffective with large plants or for long experiments, a new type of clinostat is proposed on which intracellular conditions can be rendered virtually identical to those of plants in satellite free fall regardless of plant size or duration of experiment.  相似文献   

6.
Lerche D  Frömer D 《Biorheology》2001,38(2-3):249-262
The flow properties of blood are mostly determined using various viscometric approaches, and described in terms of a shear rate or shear stress dependent apparent viscosity. The interpretation of results are rather difficult, especially at low shear rates when particle sedimentation and migration within the viscometer gap are significant. By contrast, analysing the separation process in concentrated RBC suspensions in a centrifugal field also yields information about the viscosity function, including particle-particle interaction and deformation parameters. In this paper, the sedimentation process is approached by means of the theory of kinematic waves and theoretically described by solving the corresponding one-dimensional quasi-linear partial differential equation based on viscosity/flow function as a function of volume concentration. The sedimentation kinetics of rigid spherical RBC suspended in saline and normal RBC suspended in Dx-saline solutions were investigated by means of a separation analyser (LUMiFuge 114). The instrument detects the light transmission over the total length of the cell containing the suspension. During centrifugation the analyser automatically determines the position of the particle free fluid/suspension interface or the sediment by means of a special algorithm. The data obtained with sedimentation of rigid spherical RBC at different volume concentrations demonstrate that, in the case of suspensions rotated in containers of constant cross section, there is good agreement between the theory of kinematic waves developed by Anestis and Schneider (1983) and the results of the experiments. Such good agreement was obtained even though a restrictive one-dimensional model was used to obtain the theoretically derived sedimentation time course. In addition, we describe an algorithm enabling the experimental determination of the viscosity and related flux density function to be made for any suspension. Through this approach, we investigated in detail the rheological behavior of suspended rigid spheres at low Reynolds numbers ranging from 10(-6) to 10(-3). The method here introduced also enabled us to investigate RBC suspensions with respect to the deformability and interactions of the cells by means of the separation analysis. Normal, rigid as well as aggregating RBC exhibited marked differences in the sedimentation kinetics, which were quantified by means of the flux and viscosity functions based on the theory of kinematic waves.  相似文献   

7.
The effect of centrifugal force and length of centrifugation time on the sedimentation of plant organelles was determined for corn (Zea mays L.) root homogenates. A centrifugal force of 6000g for at least 20 minutes was necessary to pellet 90% of the mitochondrial marker (cytochrome c oxidase). This initial centrifugation step is optimal for separating mitochondria from microsomes, since cross-contamination of endoplasmic reticulum and plasma membrane vesicles with mitochondria is minimized. Centrifugal forces of 8000g or 10,000g for 20 minutes and 13,000g for 15 minutes pellet 90% of the mitochondrial marker; however, these centrifugation conditions also sediment more plasma membrane and endoplasmic reticulum.  相似文献   

8.
A procedure is described for computing sedimentation coefficient distributions from the time derivative of the sedimentation velocity concentration profile. Use of the time derivative, (delta c/delta t)r, instead of the radial derivative, (delta c/delta r)t, is desirable because it is independent of time-invariant contributions to the optical baseline. Slowly varying baseline changes also are significantly reduced. An apparent sedimentation coefficient distribution (i.e., uncorrected for the effects of diffusion), g*(s), can be calculated from (delta c/delta t)r as [formula: see text] where s is the sedimentation coefficient, omega is the angular velocity of the rotor, c0 is the initial concentration, r is the radius, rm is the radius of the meniscus, and t is time. An iterative procedure is presented for computing g*(s)t by taking into account the contribution to (delta c/delta t)r from the plateau region to give (delta c/delta t)corr. Values of g*(s)t obtained this way are identical to those of g*(s) calculated from the radial derivative to within the roundoff error of the computations. Use of (delta c/delta t)r, instead of (delta c/delta r)t, results in a significant increase (greater than 10-fold) in the signal-to-noise ratio of data obtained from both the uv photoelectric scanner and Rayleigh optical systems of the analytical ultracentrifuge. The use of (delta c/delta t)r to compute apparent sedimentation coefficient distributions for purposes of boundary analysis is exemplified with an antigen-antibody system.  相似文献   

9.
The characterization of a dielectrophoretic/gravitational field-flow-fractionation (DEP/G-FFF) system using model polystyrene (PS) microbeads is presented. Separations of PS beads of different surface functionalization (COOH and none) and different sizes (6, 10, and 15 microm in diameter) are demonstrated. To investigate the factors influencing separation performance, particle elution times were determined as a function of particle suspension conductivity, fluid flow rate, and applied field frequency and voltage. Experimental data were analyzed using a previously reported theoretical model and good agreement between theory and experiment was found. It was shown that separation of PS beads was based on the differences in their effective dielectric properties. Particles possessing different dielectric properties were positioned at different heights in a fluid-flow profile in a thin chamber by the balance of DEP and gravitational forces, transported at different velocities under the influence of the fluid flow, and thereby separated. To explore hydrodynamic (HD) lift effects, velocities of PS beads were determined as a function of fluid flow rate in the separation chamber when no DEP field was applied. In this case, particle equilibrium height positions were governed solely by the balance of HD lift and gravitational forces. It was concluded that under the experimental conditions reported here, the DEP force was the dominant factor in controlling particle equilibrium height and that HD lift force played little role in DEP/G-FFF operation. Finally, the influence of various experimental parameters on separation performance was discussed for the optimization of DEP/G-FFF.  相似文献   

10.
The design and application of a settler to a continuous fermentation process with yeast recycle were studied. The compact lamella-type settler was chosen to avoid large volumes associated with conventional settling tanks. A rationale of the design method is covered. The sedimentation area was determined by classical batch settling rate tests and sedimentation capacity calculation. Limitations on the residence time of the microorganisms in the settler, rather than sludge thickening considerations, was the approach employed for volume calculation. Fermentation rate tests with yeast after different sedimentation periods were carried out to define a suitable residence time. Continuous cell recycle fermentation runs, performed with the old and new sedimentation devices, show that lamella settler improves biomass recycling efficiency, being the process able to operate at higher sugar concentrations and faster dilution rates.  相似文献   

11.
In a vertically rotating centrifuge, the direction of the resultant gravitational and centrifugal forces is constantly changing. Hornets placed in such a centrifuge will build their combs in the direction of the resultant only if the centrifuge is stopped every day and left in the same position for at least half an hour, because during the cessation of motion, they presumably “learn” some geometrical cues which enable them to determine the preferred angle of building. Hornets can detect and respond to a centrifugal force as small as 0·18% of the earth's gravitational force. At a rotational rate of 1/8 of a revolution per minute there was no comb construction whatsoever and hornet mortality rate was 100% within three days.  相似文献   

12.
Two models of sedimentation in a density gradient are analyzed. The first is for sedimentation in cylindrical sector geometry and contains the assumption that diffusion can be neglected. The second treats sedimentation in a rectangular field and includes diffusion, although the boundaries are not treated exactly. In both of these models we approximate the time dependence of the gradient by a relaxation form. We derive exact results for both models. It is also shown that the sedimentation coefficient can be calculated from data by following the motion of the position of the maximum (or minimum) of the concentration gradient.  相似文献   

13.
《Biorheology》1997,34(4-5):349-362
The sedimentation rate (SR) of non-aggregated spherical particles in suspension was determined using an ultrasonic interferometry technique (Echo-Cell); this method is based on A-mode echography and measures the rate of formation of a sediment on a solid plate during settling. The particle accumulation rate, which is related to SR, is obtained from the interference of two waves reflected by two interfaces: one between the plate and the sediment and the other between the sediment and the suspension. Studies were carried out at 25°C using latex spheres of different diameters (7 to 20 μm) and densities (1.062 to 1.190 g/cm3) suspended in distilled water at various volume fractions (1% to 5%). As anticipated by the Stokes model, linear relations were found between SR and both particle density and the square of particle radius. Experimental SR values decreased with increasing suspension particle concentration; these concentration effects were in good agreement with those predicted by the Steinour model. Our results thus serve to validate the theoretical aspects of the Echo-Cell method and suggest its usefulness as a tool for studies of RBC interaction and RBC aggregation.  相似文献   

14.
The local exchange model developed by McNair et al. (1997) provides a stochastic diffusion approximation to the random-like motion of fine particles suspended in turbulent water. Based on this model, McNair (2000) derived equations governing the probability distribution and moments of the hitting time, which is the time until a particle hits the bottom for the first time from a given initial elevation. In the present paper, we derive the corresponding equations for the probability distribution and moments of the hitting distance, which is the longitudinal distance a particle has traveled when it hits the bottom for the first time. We study the dependence of the distribution and moments on a particle's initial elevation and on two dimensionless parameters: an inverse Reynolds number M (a measure of the importance of viscous mixing compared to turbulent mixing of water) and the Rouse number ?(a measure of the importance of deterministic gravitational sinking compared to stochastic turbulent mixing in governing the vertical motion of a particle). We also compute predicted hitting-distance distributions for two published data sets. The results show that for fine particles suspended in moderately to highly turbulent water, the hitting-distance distribution is strongly skewed to the right, with mode相似文献   

15.
The work presented here describes an ultra scale-down (USD) methodology for predicting centrifugal clarification performance in the case of high cell density fermentation broths. Existing USD approaches generated for dilute systems led to a 5- to 10-fold overprediction of clarification performance when applied to such high cell density feeds. This is due to increased interparticle forces, leading to effects such as aggregation, flocculation, or even blanket sedimentation, occurring in the low shear environment of a laboratory centrifuge, which will not be apparent in the settling region of a continuous-flow industrial centrifuge. A USD methodology was created based upon the dilution of high solids feed material to approximately 2% wet wt/vol prior to the application of the clarification test. At this level of dilution cell-cell interactions are minimal. The dilution alters the level of hindered settling in the feed suspensions, and so mathematical corrections are applied to the resultant clarification curves to mimic the original feed accurately. The methodology was successfully verified: corrected USD curves accurately predicted pilot-scale clarification performance of high cell density broths of Saccharomyces cerevisiae and Escherichia coli cells. The USD method allows for the rapid prediction of large-scale clarification of high solids density material using millilitre quantities of feed. The advantages of this method to the biochemical engineer, such as the enabling of rapid process design and scale-up, are discussed.  相似文献   

16.
Motivated by examples in developmental biology and ecology, we develop a model for convection-dominated invasion of a spatial region by initially motile agents which are able to settle permanently. The motion of the motile agents and their rate of settling are affected by the local concentration of settled agents. The model can be formulated as a nonlinear partial differential equation for the time-integrated local concentration of the motile agents, from which the instantaneous density of settled agents and its long-time limit can be extracted. In the limit of zero diffusivity, the partial differential equation is of first order; for application-relevant initial and boundary-value problems, shocks arise in the time-integrated motile agent density, leading to delta-function components in the motile agent density. Furthermore, there are simple solutions for a model of successive layer formation. In addition some analytic results for a one-dimensional system with non-zero diffusivity can also be obtained. A case study, both with and without diffusion, is examined numerically. Some important predictions of the model are insensitive to the specific settling law used and the model offers insight into biological processes involving layered growth or overlapping generations of colonization.  相似文献   

17.
Isoelectric soya-protein precipitate densities were measured for mean particle sizes ranging from 3.4-65 mum by gradient centrifugation, centrifugation in water-immiscible solvents, tracerdilution, gravity sedimentation of isolated particles. Coulter counter volume determination, and a comparison of Coulter counter and centrifugal sedimentation size distributions. The immiscible system and tracer dilution methods were both found to be unreliable due to experimental uncertainties. The Coulter counter volume measurement indicated the existence of a density-size relationship with the aggregate density decreasing as the size increased. Comparison with sedimentation measurements showed that the Coulter counter measures 80% of the total aggregate volume for 6-mum particles. The relation between aggregate density (rho(a), kg m (-3)) and size (d, mum) was measured for isoelectric soya protein and casein precipitated by ammonium sulfate, using a comparison of the Coulter counter size distribution and centrifugal sedimentation. The functions were described for soya by \documentclass{article}\pagestyle{empty}\begin{document}$$ \rho _a - 1004 = 246d;{ - 0.408} $$\end{document} and for casein by \documentclass{article}\pagestyle{empty}\begin{document}$$ \rho _a - 1136 = 31d;{ - 0.441} $$\end{document} The gradient centrifugation method measured the buoyant density of hydrated protein precipitate which was independent of size, and is consistent with an aggregate structure consisting of primary particles. However, the aggregate structure was not described for all sizes by the theoretical cubic packing of hard-sphere primary particles, nor by the successive random addition of primary particles. The density-size functions indicated up to a fivefold difference in Stokes settling velocities compared to those calculated assuming a constant density difference.  相似文献   

18.
Aerobic granulation is a promising process for wastewater treatment, but this granulation process is very complicated and is affected by many factors. Thus, a mathematical model to quantitatively describe such a granulation process is highly desired. In this work, by taking into account all of key steps including biomass growth, increase in particle size and density, detachment, breakage and sedimentation, an one‐dimensional mathematic model was developed to simulate the granulation process of activated sludge in a sequencing batch reactor (SBR). Discretization methodology was applied by dividing operational time, sedimentation process, size fractions and slices into discretized calculation elements. Model verification and prediction for aerobic granulation process were conducted under four different conditions. Four parameters indicative of granulation progression, including mean radius, biomass discharge ratio, total number, and bioparticle size distribution, were predicted well with the model. An optimum controlling strategy, automatically adjusted of settling time, was also proposed based on this model. Moreover, aerobic granules with a density higher than 120 g VSS/L and radius in a range of 0.4–1.0 mm were predicted to have both high settling velocity and substrate utilization rate, and the corresponding optimum operating conditions were be determined. Experimental results demonstrate that the developed model is appropriate for simulating the formation of aerobic granules in SBRs. These results are useful for designing and optimizing the cultivation and operation of aerobic granule process. Biotechnol. Bioeng. 2013; 110: 1312–1322. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
The primary mode of depositon of particles in the respiratory tract in the size range 0.5-10 mum diam (unit density) is sedimentation. The rate of sedimentation is directly proportional to the velocity of settling of the particle. Therefore, the total deposition of particles in the respiratory tract as well as the region of deposition is affected by changes in gravity. Human subjects were exposed to aerosols of 2.02-mum-diam polyvinyltoluene particles at 0, 0.5, 1.0, and 2.0 G. Total deposition was measured at each G level. Results indicate an almost linear increase in total deposition with increasing G levels over the range studied. The deposition measured at 1 G was less than reported in earlier experiments and the deposition at levels less than 1 G was less than had been calculated by Muir and Beeckmans. These data show that although sedimentation plays the major role in depostion of 2.02 mum particles, it is less than previously described.  相似文献   

20.
The structural behavior of the nucleosome core particles in the range of solvent Na+ concentration from 10.45 to 0.45 mM has been studied by small-angle neutron and synchroton radiation X-ray scattering, sedimentation, atomic absorption spectroscopy, density measurements, and circular dichroism. With decreasing salt concentration, the appearance of a scattering peak that is assignable to interparticle interactions, an intraparticle structural transition, a decrease in the sedimentation velocity of the particle, and a release of bound Na+ ions from the particle are all observed concurrently when the ratio of solvent Na+ ions per particle is below approximately 1000. These observations are interpreted to indicate that a release of bound Na+ ions from the particle brings about structural rearrangements and weakens the electrostatic shielding of the particle, and this introduces long-range repulsive ordering of the particle in low-salt solution. Analyses of the scattering data indicate that the rearrangement within the core particle in low-salt solution is slight, changing the particle's shape slightly from cylindrical to a more spherical form by moving the center of the mass of the DNA somewhat inward with accompanying small decreases in the radii of gyration of both the DNA and the histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号