共查询到20条相似文献,搜索用时 78 毫秒
1.
分析了放射型根瘤菌(R. radiobacter) WSH2601生物合成辅酶Q10的代谢途径网络,并在溶氧条件改变和培养基中添加玉米浆条件下对辅酶Q10发酵细胞内代谢途径流量变化作定量的分析,结果表明:提高溶氧浓度(20%)5_磷酸核酮糖(Ru5P)物流(r7)增加26.6,即糖酵解途径(EMP)途径向磷酸戊糖途径(HMP)转移;添加1%玉米浆r7增加17.2,EMP与HMP途径物流比值与三羧酸循环(TCA)途径物流都下降,而癸异戊烯基焦磷酸(DPP)生成物流通量(绝对值)变化都较小,即辅酶Q10的生物合成更大程度地取决于辅酶Q10生物合成途径中催化DPP的合成和4_羟基苯甲酸(PHB)与DPP的缩合反应的两种关键酶活性。6_磷酸葡萄糖(G6P)节点是辅酶Q10生物合成代谢途径的柔性节点,而丙酮酸节点是半柔性节点。细胞生物量的提高与HMP途径物流增加有关。 相似文献
2.
光合细菌产辅酶Q10发酵条件的研究 总被引:10,自引:0,他引:10
利用均匀设计原理进行实验设计 ,对光合细菌R .capsulatusMT1131产辅酶Q10培养基配方及培养条件进行优化 ,结果当培养基中酵母膏质量浓度为 3 .13g·L- 1 ,硫酸铵 0 .8g·L- 1 ,Mg2 + 0 .6 4g·L- 1 ,Fe2 + 45 .2mg·L- 1 ,Mn2 + 18mg·L- 1 ,Co2 + 16mg·L- 1 ,培养基初始pH值为 7.0时 ,于 30℃ ,光照强度为 2 0 0 0Lx条件下培养 4天后 ,菌体中辅酶Q10质量浓度由 15 .2 13mg·L- 1提高至 2 0 .36 5mg·L- 1 ,产量提高约 33.87%。 相似文献
3.
营养条件和流加发酵对放射型根瘤菌(Rhizobium radiobacter)产辅酶Q10的影响 总被引:7,自引:0,他引:7
利用放射型根瘤菌WSH2 6 0 1(RhizobiumradiobacterWSH2 6 0 1)重点考察了葡萄糖、蔗糖、玉米浆和蛋白胨、添加物以及流加发酵对细胞生长和产辅酶Q1 0 的影响 ,结果表明 ,葡萄糖和蔗糖适合于生产辅酶Q1 0 的最佳浓度分别为 30g L和 40g L ;辅酶Q1 0 发酵时玉米浆和蛋白胨的最适浓度分别为 11g L和 16g L ;添加蕃茄汁、玉米浆能提高发酵液的生物量 ,玉米浆、异戊醇、L 甲硫氨基酸等能促进辅酶Q1 0 的积累 ;与分批发酵相比 ,在 7L罐上流加蔗糖其细胞生物量 (DCW)和辅酶Q1 0 积累量增加 ,若在流加蔗糖的同时流加适当浓度的玉米浆能显著提高辅酶Q1 0 的产量 ,最大产量达到 5 2 .4mg L ;最大生物量 (DCW)和胞内辅酶Q1 0 含量 (C B值 )分别达到 2 6 .4g L和 2 .38mg g DCW ,比不流加的分批发酵分别提高 5 3 %和 33% ,比只流加蔗糖分别提高 2 4%和 2 6 %。 相似文献
4.
产辅酶Q10酵母的发酵条件研究 总被引:17,自引:0,他引:17
研究了豆油、豆粉、胡萝卜汁、西红柿汁、烟叶、β-胡萝卜素、桔子皮汁等自然物的添加对酵母发酵生产CoQ10的影响,结果表明它们均能大幅度提高酵母菌中CoQ10的含量。其中豆油、豆粉、西红柿汁、桔子皮汁是富含CoQ10。和胡萝卜素合成途经中的前体物质因而提高了CoQ10的产量;烟叶和β-胡萝卜素阻断了合成β-胡萝卜素的途经从而起到提高CoQ10合成的作用;胡萝卜汁的作用可能两兼而有之。因此可以得出以下结论,微生物中Co10的合成与β-胡萝卜素的合成密切相关。 相似文献
5.
6.
研究了β-紫罗酮和麦角固醇对酵母生长及产辅酶Q10的影响。研究发现,β-紫罗酮能促进菌体积累辅酶Q10,当培养基中β-紫罗酮的添加量为0·208×10-3mol/L时,菌体中CoQ10的含量提高了28·3%;少量麦角固醇能促进菌体产辅酶Q10,当麦角固醇的添加量为0·15×10-4mol/L时,菌体中CoQ10的含量提高了31·8%,而增加麦角固醇的添加量为0·60×10-4mol/L时则会抑制菌体产辅酶Q10;同时添加β-紫罗酮和麦角固醇时,菌体中CoQ10的含量提高了36·1%。研究结果表明,β-紫罗酮和麦角固醇能有效地促进菌体产辅酶Q10,这为发酵法生产辅酶Q10提供了一条新的研究思路。 相似文献
7.
8.
辅酶Q10补充对青少年运动员肝线粒体功能和有氧运动能力的影响 总被引:1,自引:0,他引:1
目的:观察CoQ10补充对青少年运动员肝线粒体功能和有氧运动能力的影响。方法:18名进行耐力训练的男性青少年游泳运动员单盲随机分为Q组及P组,分别补充CoQ10 100mg/d或安慰剂28d。结果:①补充后Q组血浆CoQ10浓度显著增高,且显著高于P组;②补充后Q组安静状态的血浆MDA水平无显著改变,且显著低于P组;③首次恒定负荷运动后总体血浆CoQ10浓度较安静状态显著降低;④总体血浆CoQ10基础浓度与首次递增负荷运动中测定的VO2max显著正相关;⑤补充前后在1h耐力运动中动脉血酮体比的改变程度Q组与P组无组间差异;⑥Q组与P组VO2 max、个体乳酸阈和运动节省化的改变程度无组间差异。结论:尽管急性耐力运动中机体对CoQ10的需求增加,CoQ10补充也可降低血浆脂质过氧化水平,外源性CoQ10不能改善青少年运动员的肝线粒体功能和有氧运动能力。 相似文献
9.
10.
以含辅酶Q10(CoQ10) 分别为0、40、80和120 mg/kg的4种饲料饲喂平均初始体重为(19.97±0.13) g的吉富罗非鱼(Oreochromis niloticus, GIFT)幼鱼56d, 探讨辅酶Q10对吉富罗非鱼幼鱼生长性能、体成分、抗氧化能力、组织结构和基因表达的影响。结果显示, 各辅酶Q10组吉富罗非鱼幼鱼的终末体重、摄食率、特定生长率和饲料效率与对照组均无显著差异, 120 mg/kg辅酶Q10组终末体重、特定生长率和饲料效率均为最高; 辅酶Q10含量为120 mg/kg时, 吉富罗非鱼幼鱼的干物质消化率显著升高; 各辅酶Q10组血清过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性均显著高于对照组; 各辅酶Q10组肝脏CAT和GSH-Px活性均显著高于对照组, 80和120 mg/kg辅酶Q10组肝脏总超氧化物歧化酶(SOD)和谷胱甘肽S转移酶(GST)活性均显著升高, 丙二醛(MDA)含量显著降低; 各实验组去内脏全鱼的水分、粗蛋白和灰分含量均无显著性差异, 120 mg/kg辅酶Q10组去内脏全鱼粗脂肪显著低于对照组; 各实验组内脏团水分、粗蛋白、粗脂肪和灰分含量均无显著性差异; 各实验组肝脏组织学观察未发现明显的结构变化, 120 mg/kg辅酶Q10组肠道绒毛长度、绒毛密度和肌层厚度显著增加; 120 mg/kg辅酶Q10组的肝脏sod、cat、gsh-px、gst和igm基因表达量显著上调, 各辅酶Q10组的il-1β和il-8基因表达量均显著低于对照组; 在嗜水气单胞菌(Aeromonas hydrophila)腹腔注射攻毒实验中, 80与120 mg/kg辅酶Q10组吉富罗非鱼幼鱼累计存活率均显著高于对照组。结果表明, 饲料中添加辅酶Q10≤120 mg/kg对吉富罗非鱼幼鱼无不良损伤, 饲喂120 mg/kg辅酶Q10能提高吉富罗非鱼幼鱼的消化率、抗氧化能力、肝脏抗氧化相关基因的表达和对嗜水气单胞菌的抗病力。 相似文献
11.
Effect of culture conditions on producing and uptake hydrogen flux of biohydrogen fermentation by metabolic flux analysis method 总被引:1,自引:0,他引:1
In this work, metabolic flux analysis (MFA) method was used to estimate the effects of the culture conditions on both the producing and uptake hydrogen flux inside the cell of Klebsiella pneumoniae ECU-15. The results indicated that higher temperature could reduce the amount of the uptake hydrogen and enhance the hydrogen production from the NADH pathway. Moreover, both the producing hydrogen flux from formate and the uptake hydrogen flux were attained to the maximum at pH 7.0-7.5. The producing hydrogen flux was higher at 5 g/L initial glucose than that of the other concentrations, and the uptake hydrogen flux showed the minimum value under the same condition. The apparent hydrogen generation was caused by the combined action of producing hydrogenase, uptake hydrogenase and bidirectional hydrogenase. These results were helpful to deeply understand the mechanism of the biohydrogen evolving process and establish the suitable molecular strategies for improving hydrogen production. 相似文献
12.
Significant progress has been made in using existing metabolic databases to estimate metabolic fluxes. Traditional metabolic flux analysis generally starts with a predetermined metabolic network. This approach has been employed successfully to analyze the behaviors of recombinant strains by manually adding or removing the corresponding pathway(s) in the metabolic map. The current work focuses on the development of a new framework that utilizes genomic and metabolic databases, including available genetic/regulatory network structures and gene chip expression data, to constrain metabolic flux analysis. The genetic network consisting of the sensing/regulatory circuits will activate or deactivate a specific set of genes in response to external stimulus. The activation and/or repression of this set of genes will result in different gene expression levels that will in turn change the structure of the metabolic map. Hence, the metabolic map will automatically "adapt" to the external stimulus as captured by the genetic network. This adaptation selects a subnetwork from the pool of feasible reactions and so performs what we term "environmentally driven dimensional reduction." The Escherichia coli oxygen and redox sensing/regulatory system, which controls the metabolic patterns connected to glycolysis and the TCA cycle, was used as a model system to illustrate the proposed approach. 相似文献
13.
辅酶Q10具有很高的保健和临床应用价值,开发潜力巨大。主要从菌种筛选、发酵条件优化以及提取方法改进三方面介绍了如何提高微生物发酵辅酶Q10产量的一些研究进展。 相似文献
14.
Fermentative hydrogen production (FHP) has received a great R & D interest in recent decades, as it offers a potential means of producing H2 from a variety of renewable resources, even wastewater via a low energy continuous process. Various extracellular metabolites including ethanol, acetate, butyrate and lactate can be produced during the fermentation, building a complex metabolic network of the FHP. Except for the recognition of its complexity, the metabolic flux network has not been well understood. Studies on biochemical reactions and metabolic flux network associated with the FHP in anaerobic fermentation system have only been drawn attention in recent years. This review summarizes the biochemical reactions taking place in the metabolic network of FHP. We discuss how the key operation factors influence metabolism in the FHP process. Recently developed and applied technologies for metabolic flux analysis have been described. Future studies on the metabolic network to enhance fermentative hydrogen production by strict anaerobes are recommended. It is expected that this review can provide useful information in terms of fundamental knowledge and update technology for scientists and research engineers in the field of biological hydrogen production. 相似文献
15.
The cell growth and CoQ10 (coenzyme Q10) formation of Rhizobium radiobacter WSH2601 were investigated in a 7-1 bioreactor under different dissolved oxygen (DO) concentrations. A maximal CoQ10 content (C/B) of 1.91 mg/g dry cell weight (DCW) and CoQ10 concentration of 32.1 mg/l were obtained at the appropriate DO concentration of 40% (of air saturation). High DO concentration was favourable to the cell growth of Rhizobium radiobacter WSH2601. In order to achieve the maximal yield of CoQ10 production, a new DO-stat feeding strategy was proposed, which significantly improved cell growth and CoQ10 formation. With this strategy, the maximal CoQ10 concentration and DCW reached 51.1 mg/l and 23.9 g/l, respectively, which were 67 and 44.8% higher than those obtained in the batch culture with DO concentration controlled. 相似文献
16.
Suk-Jin Ha Sang-Yong Kim Jin-Ho Seo Won-Il Sim Hee-Jung Moon Jung-Kul Lee 《World journal of microbiology & biotechnology》2008,24(6):887-890
By the optimization of nitrogen source for coenzyme Q10 (ubiquinone, CoQ10) production in Agrobacterium tumefaciens KCCM 10413 culture, the highest CoQ10 production was achieved in medium containing corn steep powder (CSP). Components for a stimulatory effect on the production
of CoQ10 in CSP were screened, and lactate was found to increase dry cell weight (DCW) and the specific CoQ10 content. In a fed-batch culture of A. tumefaciens, supplementation with 1.5 g of lactate l−1 further improved DCW, the specific CoQ10 content, and CoQ10 production by 16.0, 5.8, and 22.8%, respectively. It has been reported that lactate stimulates cell growth and acts as an
accelerator driving the tricarboxylic acid (TCA) cycle (Roberto et al. 2002, Biotechnol Let 24:427–431; Matsuoka et al. 1996, Biosci Biotechnol Biochem 60:575–579). In this study, lactate supplementation increased DCW and the specific CoQ10 content in A. tumefaciens culture, probably by accelerating TCA cycle and energy production as reported previously, leading to the increase of CoQ10 production. 相似文献
17.
On-line optimization of glutamate production based on balanced metabolic control by RQ 总被引:3,自引:0,他引:3
In glutamate fermentations by Corynebacterium glutamicum, higher glutamate concentration could be achieved by constantly controlling dissolved oxygen concentration (DO) at a lower level; however, by-product lactate also severely accumulated. The results of analyzing activities changes of the two key enzymes, glutamate and lactate dehydrogenases involved with the fermentation, and the entire metabolic network flux analysis showed that the lactate overproduction was because the metabolic flux in TCA cycle was too low to balance the glucose glycolysis rate. As a result, the respiratory quotient (RQ) adaptive control based “balanced metabolic control” (BMC) strategy was proposed and used to regulate the TCA metabolic flux rate at an appropriate level to achieve the metabolic balance among glycolysis, glutamate synthesis, and TCA metabolic flux. Compared with the best results of various DO constant controls, the BMC strategy increased the maximal glutamate concentration by about 15% and almost completely repressed the lactate accumulation with competitively high glutamate productivity. 相似文献
18.
Objective
Gentamicin (GM) is an effective antibiotic against severe infection but has limitations related to nephrotoxicity. In this study, we investigated whether benfotiamine (BFT) and coenzyme Q10 (CoQ10), could ameliorate the nephrotoxic effect of GM in rats.Methods
Rats were divided into five groups. Group 1 and 2 served as control and sham respectively, Group 3 as GM group, Group 4 as GM + CoQ10 and Group 5 as GM + BFT for 8 days. At the end of the study, all rats were euthanized by cervical decapitation and then blood samples and kidneys were collected for further analysis. Serum urea, creatinine, cytokine TNF-a, oxidant and antioxidant parameters, as well as histopathological examination of kidney tissues were assessed.Results
Gentamicin administration caused a severe nephrotoxicity which was evidenced by an elevated serum creatinine, urea and KIM-1 level as compared with the controls. Moreover, a significant increase in serum malondialdehyde, reduced glutathione. Histopathological examination of renal tissue in gentamisin administered group, there were extremly pronounced necrotic tubules in the renal cortex and hyalen cast accumulation in the medullar tubuli. BFT given to GM rats reduced these nephrotoxicity parameters. Serum creatinine, urea, and KIM-1 were almost normalized in the GM + BFT group. Benfotiamin treatment was significantly decreased necrotic tubuli and hyalen deposition in gentamisin plus benfotiamin group. CoQ10 given to GM rats did not cause any statistically significant alterations in these nephrotoxicity parameters when compared with GM group but histopathological examination of renal tissue in GM + CoQ10 administered group, CoQ10 treatment was decreased necrotic tubuli rate and hyalen accumulation in tubuli.Conclusion
The results from our study indicate that BFT supplement attenuates gentamicin-induced renal injury via the amelioration of oxidative stress and inflammation of renal tubular cells. 相似文献19.
Rhizobium radiobacter T6102 was morphologically purified by the aniline blue agar plates to give two distinct colonies; white smooth mucoid colony (T6102W) and blue rough colony (T6102B). The coenzyme Q(10) (CoQ(10)) was produced just by T6102W, showing 2.0 mg/g of CoQ(10) content, whereas the T6102B did not produce the CoQ(10). All of the used CoQ(10) biosynthetic precursors enhanced the CoQ(10) production by T6102W. Specifically, the supplementation of 0.75 mM isopentenyl alcohol improved the CoQ(10) concentration (19.9 mg/l) and content (2.4 mg/g) by 42% and 40%, respectively. 相似文献
20.
高产辅酶Q10结构类似物抗性突变株的选育 总被引:1,自引:0,他引:1
以土壤杆菌(Agrobacteriumsp.)TLY-4为出发菌株,采用70%致死剂量的NTG进行诱变处理,通过筛选抗辅酶Q10结构类似物维生素K3突变株,定向选育到了两株辅酶Q10高产突变株,编号为R-122和R-015,其摇瓶发酵72h时的辅酶Q10产量分别为57.3 mg/L和59.9 mg/L,较出发菌株提高了35.7%和41.6%。通过连续传代实验,表明突变株高产辅酶Q10的遗传性状稳定。实验以有机溶剂DMF和吐温-80共同增溶的方法,解决了维生素K3在培养基中易析出的问题,并确定了平板培养基中维生素K3的最小抑菌浓度为0.15 mg/mL。 相似文献