首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous reports have described antigens that are recognized on human melanoma cells by autologous cytolytic T lymphocytes (CTL). The genes coding for a number of these antigens have been identified. Here we report the cloning of a gene that codes for an antigen recognized by autologous CTL on a human renal carcinoma cell line. This antigen is presented byHLA-B7 and is encoded by a new gene that we have namedRAGE1. No expression ofRAGE1 was found in normal tissues other than retina. RAGE1 expression was found in only one of 57 renal cell carcinoma samples, and also in some sarcomas, infiltrating bladder carcinomas, and melanomas. This represents the first identification of an antigen recognized by autologous CTL on a renal tumor.  相似文献   

2.
We investigated T-cell-defined HLA-B7 subtypes using cDNA sequencing, analysis of bound peptides, and reactivity with a panel of alloreactive cytotoxic T-lymphocyte (CTL) clones. Three subtypes (HLA-B*0702, HLA-B*0703, and HLA-B*0705) differ in nucleotide and predicted amino acid sequence. CTL reactivity and pooled peptide sequencing show that these three HLA-B7 subtypes bind distinct but overlapping sets of peptides. In particular B*0702 expresses D pocket residue Asp 114 and binds peptides with P3 Arg, whereas B*0705 expresses D pocket residue Asn 114 and binds peptides with P3 Ala, Leu, and Met. Consistent with different peptide-binding specificities, three alloreactive CTL differentiate between cells expressing B*0702, B*0703, and B*0705 by detecting specific peptide/HLA-B7 complexes. In contrast, three other T-cell-defined HLA-B7 subtypes are identical to HLA-B*0702. The B*0702-expressing cell lines are differentiated by two of ten CTL clones. One CTL clone differentiates B*0702-expressing cells by their ability to present peptide antigen. Thus differences in peptide presentation can explain differential CTL recognition of cell lines expressing structurally identical and variant HLA-B7.  相似文献   

3.
Melanoma reactive CTL were obtained by stimulating PBL from a melanoma patient in remission since 1994 following adjuvant TIL immunotherapy, with the autologous melanoma cell line. They were cloned by limiting dilution. One CTL clone recognized melanoma cell lines expressing tyrosinase and the B*4002 molecule, either spontaneously or upon transfection. We demonstrated that this clone recognizes the tyrosinase-derived nonapeptide 316-324 (ADVEFCLSL) and the overlapping decapeptide 315–324 (SADVEFCLSL). We derived two distinct additional specific CTL clones from this same patient that were also reactive against B*4002 melanoma cell lines, suggesting a relative diversity of this specific repertoire in this patient. Stimulating PBMC derived from four additional B*4002 melanoma patients with the tyrosinase 316–324 nonapeptide induced the growth of specific cells for two of the patients, demonstrating the immunogenicity of this new epitope. Our data show that this nonapeptide is a new tool that could be used to generate melanoma-specific T cells for adoptive immunotherapy or serve as a peptide vaccine for HLA-B*4002 melanoma patients.  相似文献   

4.
The humanMAGE3 gene is expressed in a significant proportion of tumors of various histological types, but is silent in normal adult tissues other than testis and placenta. Antigens encoded byMAGE3 may therefore be useful targets for specific antitumor immunization. Two antigenic peptides encoded by theMAGE3 gene have been reported previously. One is presented to cytolytic T lymphocytes (CTL) by HLA-A1, the other by HLA-A2 molecules. Here we show that MAGE3 also codes for a peptide that is presented to CTL by HLA-1344.MAGE3 peptides containing the HLA-1344 peptide binding motif were synthesized. Peptide MEVDPIGHLY, which showed the strongest binding to HLA-1344, was used to stimulate blood T lymphocytes from normal HLA-1344 donors. CTL clones were obtained that recognized not only HLA-B44 cells sensitized with the peptide, but also HLA-B44 tumor cell lines expressingMAGE3. The proportion of metastatic melanomas expressing theMAGE3/HLA-1344 antigen should amount to approximately 17% in the Caucasian population, since 24% of individuals carry theHLA-B44 allele and 76% of these tumors express MAGE3.  相似文献   

5.
We previously described HLA-B35-restricted melanoma tumor-infiltrating lymphocyte responses to frequently expressed melanoma-associated Ags: tyrosinase, Melan-A/MART-1, gp100, MAGE-A3/MAGE-A6, and NY-ESO-1. Using clones derived from these TIL, we identified in this study the corresponding epitopes. We show that five of these epitopes are new and that melanoma cells naturally present all the six epitopes. Interestingly, five of these epitopes correspond to or encompass melanoma-associated Ag epitopes presented in other HLA contexts, such as A2, A1, B51, and Cw3. In particular, the HLA-B35-restricted Melan-A epitope is mimicked by the peptide 26-35, already known as the most immunodominant melanoma epitope in the HLA-A*0201 context. Because this peptide lacked adequate anchor amino acid residues for efficient binding to HLA-B35, modified peptides were designed. Two of these analogues were found to induce higher PBL- and tumor-infiltrating lymphocyte-specific responses than the parental peptide, suggesting that they could be more immunogenic in HLA-B*3501 melanoma patients. These data have important implications for the formulation of polypeptide-based vaccines as well as for the monitoring of melanoma-specific CTL response in HLA-B*3501 melanoma patients.  相似文献   

6.
We describe an HLA-A1 melanoma patient who has mounted a spontaneous cytolytic T cell (CTL) response against an antigenic peptide encoded by gene MAGE-A3 and presented by HLA-A1. The frequency of anti-MAGE-3.A1 CTLp was 5×10−7 of the blood CD8 cells, with a dominant clonotype which was present in six out of seven independent anti-MAGE-3.A1 CTL clones. After vaccination with a recombinant poxvirus coding for the MAGE-3.A1 antigen, the blood frequency of anti-MAGE-3.A1 CTLp increased tenfold. Twenty-two independent CTL clones were derived. Surprisingly, only one of them corresponded to the dominant clonotype present before vaccination. Two new clonotypes were repeated 12 and 7 times, respectively. Our interpretation of these results is that the spontaneous anti-MAGE-3.A1 CTL response pre-existing to vaccination was polyclonal, and that the vaccine restimulated only some of these clones. To estimate the incidence of spontaneous anti-MAGE-3.A1 CTL responses in melanoma patients with a tumor expressing gene MAGE-A3, we measured the blood frequency of anti-MAGE-3.A1 T cells in 45 patients, and found only two clear responses.  相似文献   

7.
The Wilms' tumor gene WT1 is overexpressed in various kinds of hematopoietic malignancies as well as solid cancers, and this protein has been demonstrated to be an attractive target antigen for cancer immunotherapy. WT1‐specific CTL epitopes with a restriction of HLA‐A*2402 or HLA‐A*0201 have been already identified. In the present study it has been demonstrated that a 9‐mer WT1‐derived WT1187 peptide, which had already been shown to elicit a WT1‐specific CTL response with a restriction of HLA‐A*0201, can also elicit a CTL response with a restriction of HLA‐A*0206. In all three different HLA‐A*0206+ healthy donors examined, WT1187 peptide‐specific CTL could be generated from peripheral blood mononuclear cells, and the CTL showed cytotoxic activity that depended on dual expression of WT1 and HLA‐A*0206 molecules. The present study describes the first identification of a HLA‐A*0206‐restricted, WT1‐specific CTL epitope. The present results should help to broaden the application of WT1 peptide‐based immunotherapy from only HLA‐A*0201‐positive to HLA‐A*0206‐positive cancer patients as well.  相似文献   

8.
Human melanoma line MZ2-MEL expresses several antigens recognized by autologous cytolytic T lymphocytes (CTL). As a first step towards the cloning of the gene coding for one of these antigens, we tried to obtain transfectants expressing the antigen. The DNA recipient cell was a variant of MZ2-MEL which had been selected with a CTL clone for the loss of antigen E. It was cotransfected with genomic DNA of the original melanoma line and with selective plasmid pSVtkneo. Geneticin-resistant transfectants were obtained at a frequency of 2 × 10–4. These transfectants were then screened for their ability to stimulate the production of tumor necrosis factor by the anti-E CTL clone. One transfectant expressing antigen E was identified among 70 000 drug-resistant transfectants. Its sensitivity to lysis by the anti-E CTL was equal to that of the original melanoma cell line. When this transfectant was submitted to immunoselection with the anti-E CTL clone, the resulting antigen-loss variants were found to have lost several of the transfected pSVtkneo sequences. This indicated that the gene coding for the antigen had been integrated in the vicinity of pSVtkneo sequences, as expected for cotransfected DNA. Address correspondence and offprint requests to: T. Boon.  相似文献   

9.
Immunotherapy is a promising new treatment for patients with advanced prostate and ovarian cancer, but its application is limited by the lack of suitable target antigens that are recognized by CD8+ cytotoxic T lymphocytes (CTL). Human kallikrein 4 (KLK4) is a member of the kallikrein family of serine proteases that is significantly overexpressed in malignant versus healthy prostate and ovarian tissue, making it an attractive target for immunotherapy. We identified a naturally processed, HLA-A*0201-restricted peptide epitope within the signal sequence region of KLK4 that induced CTL responses in vitro in most healthy donors and prostate cancer patients tested. These CTL lysed HLA-A*0201+ KLK4 + cell lines and KLK4 mRNA-transfected monocyte-derived dendritic cells. CTL specific for the HLA-A*0201-restricted KLK4 peptide were more readily expanded to a higher frequency in vitro compared to the known HLA-A*0201-restricted epitopes from prostate cancer antigens; prostate-specific antigen (PSA), prostate-specific membrane antigen (PSMA) and prostatic acid phosphatase (PAP). These data demonstrate that KLK4 is an immunogenic molecule capable of inducing CTL responses and identify it as an attractive target for prostate and ovarian cancer immunotherapy.  相似文献   

10.
Cytochrome P450 (CYP) 1A2 gene is involved in the metabolic activation of several carcinogens and altered metabolization of some clinically used drugs. We aimed to investigate the distributions of genetic polymorphisms-3860 (G/A)(CYP1A2*1C) and-2467 (T/del)(CYP1A2*1D) in the 5′-flanking region and-739 (T/G)(CYP1A2*1E) and-163(C/A)(CYP1A2*1F) in the first intron of the CYP1A2 gene in 110 unrelated healthy Turkish volunteers by PCR-RFLP technique. The frequencies of each polymorphism in Turkish population were found as 0.04, 0.92, 0.01, 0.27 for CYP1A2*1C, CYP1A2*1D, CYP1A2*1E, CYP1A2*1F, respectively. Compared with other populations, CYP1A2*1Dhas been found to be significantly increased in Turkish population. On the other hand, in general, the frequencies of the other polymorphisms were concordant with those in the Egyptian and Caucasian populations, and were different from those in the Japanese, Chinese and Ethiopian populations. Our results suggest that due to increased frequency of CYP1A2*1D in Turkish population, unctional significance of CYP1A2*1D should be evaluated. It might be screened to determine the relationship between CYP1A2*1D and CYP1A2 related drug metabolisms in associated groups. This article was submitted by the authors in English.  相似文献   

11.
Summary Cytotoxic T lymphocytes (CTL), CD3+, / T-cell-receptor-positive, are important effector cells with specific immunity in melanoma patients. The establishment and expansion in vitro of CTL of a specific phenotype to tumor cells strongly depends on the method of activation and sensitization with tumor cells. We generated CD3+ CTL lines to melanoma by co-culturing peripheral blood lymphocytes with autologous irradiated melanoma cells and repetitive stimulation with high-dose interleukin-4 in a cocktail culture medium. CTL lines were investigated for their specificity to kill autologous and allogeneic melanoma. Histocompatibility locus antigen (HLA) class I (A, B) molecules are important restrictive recognition antigens for CTL. Although these antigens are highly polymorphic, they can share a similar immunogenic molecular epitope(s) and can be immunologically cross-reactive. The CTL lines generated were found to kill not only autologous melanoma, but also allogeneic melanomas having class I HLA-A antigens shared or cross-reactive with autologous HLA-A. These CTL lines were poor killers of melanomas bearing non-shared or non-cross-reactive HLA-A. Cold-target inhibition assays demonstrated this CTL cross-reactivity to allogeneic melanoma specificity. Epstein-Barr-virus-transformed autologous and allogeneic B lymphoblastoid cell lines failed to block autologous melanoma killing, indicating that CTL were not recognizing major histocompatibility complex antigens, serum proteins or culture medium products as the primary target antigen. HLA-A2 was the major shared HLA-A antigen recognized by CTL lines on the melanoma lines studied. CTL lines also recognized shared HLA-A11 and A24 on allogeneic melanoma. There were no CTL lines showing restriction to HLA-B. These results suggest that common tumor-associated antigens are present on melanomas and are recognized in association with distinct HLA-A epitopes by CTL.This study was supported by grant CA12 582 awarded by the National Cancer Institute, USA  相似文献   

12.
The molecular basis of T-cell-mediated recognition of ovarian cancer cells remains to be fully addressed. In this study we investigated HLA class I restriction and directed antigens of cytotoxic T lymphocytes (CTL) at the sites of ovarian cancer. Three HLA-class-I-restricted CTL lines were established from the tumor sites of ovarian cancer by culturing tumor-infiltrating lymphocytes or tumor-associated ascitic lymphocytes with interleukin-2: (1) HLA-A2402-restricted and ovarian-adenocarcinoma-specific CTL, (2) HLA-A2-restricted CTL recognizing histologically different cancers, and (3) HLA-B52-restricted and ovarian-cancer-specific CTL. HLA-A0201, HLA-A0206 and HLA-A0207 tumor cells were lysed by the HLA-A2-restricted CTL. HLA-B52 restriction of the third CTL line was confirmed by the transfection of HLA-B5201 cDNA into the tumor cells. The HLA-A2-restricted CTL recognized the SART-1, but not the MAGE-1 or MAGE-3 antigen. These results may facilitate a better understanding of the molecular basis of tumor-specific immunity at the tumor site of ovarian cancer. Received: 30 December 1998 / Accepted: 2 March 1999  相似文献   

13.
Genetic variation within the HLA-B locus has the strongest impact on HIV disease progression of any polymorphisms within the human genome. However, identifying the exact mechanism involved is complicated by several factors. HLA-Bw4 alleles provide ligands for NK cells and for CD8 T cells, and strong linkage disequilibrium between HLA class I alleles complicates the discrimination of individual HLA allelic effects from those of other HLA and non-HLA alleles on the same haplotype. Here, we exploit an experiment of nature involving two recently diverged HLA alleles, HLA-B*42:01 and HLA-B*42:02, which differ by only a single amino acid. Crucially, they occur primarily on identical HLA class I haplotypes and, as Bw6 alleles, do not act as NK cell ligands and are therefore largely unconfounded by other genetic factors. We show that in an outbred cohort (n = 2,093) of HIV C-clade-infected individuals, a single amino acid change at position 9 of the HLA-B molecule critically affects peptide binding and significantly alters the cytotoxic T lymphocyte (CTL) epitopes targeted, measured directly ex vivo by gamma interferon (IFN-γ) enzyme-linked immunospot (ELISPOT) assay (P = 2 × 10−10) and functionally through CTL escape mutation (P = 2 × 10−8). HLA-B*42:01, which presents multiple Gag epitopes, is associated with a 0.52 log10 lower viral-load set point than HLA-B*42:02 (P = 0.02), which presents no p24 Gag epitopes. The magnitude of this effect from a single amino acid difference in the HLA-A*30:01/B*42/Cw*17:01 haplotype is equivalent to 75% of that of HLA-B*57:03, the most protective HLA class I allele in this population. This naturally controlled experiment represents perhaps the clearest demonstration of the direct impact of a particular HIV-specific CTL on disease control.  相似文献   

14.
A CTL clone that recognizes autologous tumor cells was previously isolated from the blood of a head-and-neck cancer patient. The Ag was identified as peptide FPSDSWCYF presented by autologous HLA-B*3503 molecules. This peptide was encoded by a mutated CASP-8 gene, which is implicated in the triggering of apoptosis. Here, we show that this CTL clone, which expresses a single TCR, also recognizes two unrelated peptides on allogeneic HLA-B*3501 molecules. One peptide, HIPDVITY, is encoded by squalene synthase, and the other one, QFADVIVLF, is encoded by 2-hydroxyphytanoyl-CoA lyase. Both genes are expressed ubiquitously. These antigenic peptides are processed and presented by HLA-B*3501 cells. The two HLA-B35 alleles are closely related. Our results might reinforce the notion that the recognition of allogeneic HLA molecules depends on the presence in their groove of a limited number of peptides processed from ubiquitous proteins.  相似文献   

15.
16.
The expression of certain HLA class I alleles, including HLA-B*27 and HLA-B*57, is associated with better control of human immunodeficiency virus type 1 (HIV-1) infection, but the mechanisms responsible are not fully understood. We sought evidence that pressure from the human restriction factor TRIM5α (hTRIM5α) could contribute to viral control. The hTRIM5α sensitivity of viruses from both HLA-B*57-positive (HLA-B*57+) and HLA-B*27+ patients who spontaneously controlled viral replication, but not viruses from viremic patients expressing these alleles, was significantly greater than that of viruses from patients not expressing these protective HLA-B alleles. Overall, a significant negative correlation between hTRIM5α sensitivity and viral load was observed. In HLA-B*57+ patients, the T242N mutation in the HLA-B*57-restricted TW10 CD8+ T lymphocyte (CTL) epitope was strongly associated with hTRIM5α sensitivity. In HLA-B*27+ controllers, hTRIM5α sensitivity was associated with a significant reduction in emergence of key CTL mutations. In several patients, viral evolution to avoid hTRIM5α sensitivity was observed but could be associated with reduced viral replicative capacity. Thus, in individuals expressing protective HLA-B alleles, the combined pressures exerted by CTL, hTRIM5α, and capsid structural constraints can prevent viral escape both by impeding the selection of necessary resistance/compensatory mutations and forcing the selection of escape mutations that increase hTRIM5α sensitivity or impair viral replicative capacity.  相似文献   

17.
CD4+ cytotoxic T lymphocytes (CTL) clones, YT-4 and YT-9, specific for Toxoplasma gondii (T. gondii)-infected melanoma SK-MEL 28 (P36), were generated from the peripheral blood lymphocytes (PBL) of a patient with chronic toxoplasmosis. These CTL clones were shown to secrete significant amounts of interleukin 6 (IL-6) and interferon γ (IFN-γ) upon antigen (Ag)-specific stimulation. Downregulation of human leukocyte antigen (HLA)-DR surface expression and HLA-DR mRNA levels in P36 cells were observed when P36 cells were infected with T. gondii. Such downregulated HLA-DR expressions of 71 gondii-infected P36 cells were upregulated by treatment with both recombinant IL-6 (rIL-6) and recombinant IFN-γ (rIFN-γ). The antigen-presenting ability of T. gondii-infected P36 cells to T. gondii-infected cell-specific CTL was enhanced by rIFN-γ but not by rIL-6. The present study reveals the existence of differential regulation of HLA-DR expression and Ag presentation in T. gondii-infected melanoma cells by IL-6 and IFN-γ.  相似文献   

18.
F1 complementation results indicate that a new gene, putatively controlling a minor histocompatibility antigen, is closely linked to the minor histocompatibility gene,H-3, in the fifth linkage group of chromosome 2 of the mouse. This gene controls a product that was capable of inducing as well as acting as a target for cytotoxic lymphocytes (CTL). The lytic activity of CTL developed in B10.LP-H-3b mice specific for the product of the new gene of B10 was restricted to target cells possessing H-2Db antigens. This contrasts to the H-2Kb-restricted activity of H-3.1 specific CTL.  相似文献   

19.
Expression of HLA-B*57 and the closely related HLA-B*58:01 are associated with prolonged survival after HIV-1 infection. However, large differences in disease course are observed among HLA-B*57/58:01 patients. Escape mutations in CTL epitopes restricted by these HLA alleles come at a fitness cost and particularly the T242N mutation in the TW10 CTL epitope in Gag has been demonstrated to decrease the viral replication capacity. Additional mutations within or flanking this CTL epitope can partially restore replication fitness of CTL escape variants. Five HLA-B*57/58:01 progressors and 5 HLA-B*57/58:01 long-term nonprogressors (LTNPs) were followed longitudinally and we studied which compensatory mutations were involved in the restoration of the viral fitness of variants that escaped from HLA-B*57/58:01-restricted CTL pressure. The Sequence Harmony algorithm was used to detect homology in amino acid composition by comparing longitudinal Gag sequences obtained from HIV-1 patients positive and negative for HLA-B*57/58:01 and from HLA-B*57/58:01 progressors and LTNPs. Although virus isolates from HLA-B*57/58:01 individuals contained multiple CTL escape mutations, these escape mutations were not associated with disease progression. In sequences from HLA-B*57/58:01 progressors, 5 additional mutations in Gag were observed: S126N, L215T, H219Q, M228I and N252H. The combination of these mutations restored the replication fitness of CTL escape HIV-1 variants. Furthermore, we observed a positive correlation between the number of escape and compensatory mutations in Gag and the replication fitness of biological HIV-1 variants isolated from HLA-B*57/58:01 patients, suggesting that the replication fitness of HLA-B*57/58:01 escape variants is restored by accumulation of compensatory mutations.  相似文献   

20.
Functional dissection of HLA-B27 subtypes using alloreactive or B27-restricted CTL has shown that the structurally related B*2704 and B*2706 are the most distant subtypes relative to the prototype B*2705. In particular, previous studies have failed to find anti-B*2705 CTL cross-reacting with B*2704 or B*2706. Such failure can be accounted for by the drastic effect on T cell recognition of the change at residue 152 in both subtypes relative to B*2705, as established with site-directed mutants. B*2704 and B*2706 are also related in ethnic distribution, as they are restricted to Orientals, jointly being the predominant HLA-B27 subtypes in this population. As far as it is known, there are no differences relative to B*2705 in their linkage to ankylosing spondylitis. In our study, 5 of 13 examined anti-B*2705 limiting dilution CTL lines from a particular HLA-B27- individual were shown to crossreact with B*2704, B*2706 or both. The monoclonal nature of this cross-reaction was established by cold target competition analysis. This result demonstrates that the apparent differences in T cell antigenicity among anti-B27 subtypes are strongly influenced by the responder individual, as the spectrum of clonal specificities in anti-B27 responses may show significant differences among unrelated responders. Fine specificity differences among the cross-reactive CTL allowed unambiguous functional distinction between B*2704 and B*2706. The molecular basis of such cross-reactivity was examined by correlating CTL reaction patterns with the structure of both subtypes, which differ only by two residues located in the beta-pleated sheet bottom of the peptide binding site, and with site-directed mutants mimicking HLA-B27 subtype polymorphism. The results suggest that: 1) distinct peptides are involved in the allospecific epitopes recognized by the various crossreactive CTL, and 2) B*2704, B*2706, and B*2705 differ in their peptide-presenting specificity, but can present some identical or structurally similar peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号