首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of ribosomal-protein genes in Xenopus laevis development   总被引:27,自引:0,他引:27  
Using probes to Xenopus laevis ribosomal-protein (r-protein) mRNAs, we have found that in the oocyte the accumulation of r-protein mRNAs proceeds to a maximum level, which is attained at the onset of vitellogenesis and remains stable thereafter. In the embryo, r-protein mRNA sequences are present at low levels in the cytoplasm during early cleavage (stages 2-5), become undetectable until gastrulation (stage 10) and accumulate progressively afterwards. Normalization of the amount of mRNA to cell number suggests an activation of r-protein genes around stage 10; however, a variation in mRNA turnover cannot be excluded. Newly synthesized ribosomal proteins cannot be found from early cleavage up to stage 26, with the exception of S3, L17 and L31, which are constantly made, and protein L5, which starts to be synthesized around stage 7. A complete set of ribosomal proteins is actively produced only in tailbud embryos (stages 28-32), several hours after the appearance of their mRNAs. Before stage 26 these mRNA sequences are found on subpolysomal fractions, whereas more than 50% of them are associated with polysomes at stage 31. Anucleolate mutants do not synthesize ribosomal proteins at the time when normal embryos do it very actively; nevertheless, they accumulate r-protein mRNAs.  相似文献   

2.
Reiterated transfer RNA genes of Xenopus laevis   总被引:15,自引:0,他引:15  
The proportion of the Xenopus laevis genome complementary to “7 S” RNA, unfractionated transfer RNA and some selected aminoacyl-tRNAs, and the sequence complexity of these RNA species, have been determined by following the kinetics of RNA-DNA hybridization on filters under conditions of RNA excess at optimum rate temperature. For hybridization of aminoacyl-labelled tRNAs, conditions for optimum aminoacylation were first determined and, where necessary, aminoacyl-tRNAs were treated with nitrous acid to prevent discharge during annealing. Neither the extent nor rate of hybridization was affected by this treatment.“7 S” RNA, coded for by 580 genes per haploid complement of chromosomes, reacts like a single family of nucleotide sequences, whereas about 43 basic tRNA sequences are coded for by at least 7800 genes. If hybrids are not treated with RNase A, the apparent tDNA redundancy is some 23% greater but no more nucleotide sequences are detectable. Taken together, the results suggest that each tRNA sequence is, on average, 200-fold reiterated.The reiteration varies, however, for different aminoacyl-tRNAs. Thus, hybridization resolves only one valyl-tRNA which is coded for by 240 genes, but at least four leucyl-tRNA sequences can be distinguished by hybridization, each of which is on average 90-fold reiterated. Reiteration also varies for the two methionyl-tRNAs detectable both by hybridization and by reversed phase chromatography: tRNA1Met and tRNA2Met are 310- and 170-fold reiterated, respectively, and each is kinetically homogeneous. These saturation values are almost exactly additive and are not influenced by the presence of other tRNA species. Thus the results suggest that Xenopus tRNAs are no more heterogeneous than would be predicted by the genetic code, despite the high but variable multiplicity of tRNA cistrons.  相似文献   

3.
4.
5.
A hamster vimentin cDNA probe has been used to isolate and characterize three Xenopus laevis intermediate filament genes, named XIF1, XIF3 and XIF6. Of these, XIF6 shows 89% homology at the amino acid level to a portion of porcine neurofilament-M. XIF6 is transcribed solely in nervous tissue of embryos, commencing at the late neural tube stage. Expression is totally dependent on an interaction between mesoderm and ectoderm during gastrulation and can be used as a marker of neural induction. XIF1 shows 94% homology and XIF3 83% homology to hamster vimentin at the amino acid level over a region of the protein. Although XIF1 and XIF3 show more homology to vimentin than to any other intermediate filament gene, they have distinct temporal and spatial patterns of expression. XIF1 expression most resembles that of vimentin in higher vertebrates, being expressed in embryonic myotome and nerve cord, whilst XIF3 is unusual in that its expression is restricted predominantly to the head in tailbud embryos.  相似文献   

6.
7.
Vitellogenin in Xenopus laevis is encoded in a small family of genes.   总被引:36,自引:0,他引:36  
W Wahli  I B Dawid  T Wyler  R B Jaggi  R Weber  G U Ryffel 《Cell》1979,16(3):535-549
Vitellogenin, the yolk protein precursor, is produced in X. laevis liver from a 6.3 kilobase (kb) mRNA. Sequences of this mRNA have been transcribed into cDNA and cloned in E. coli. Some properties of 21 of these cloned DNAs, ranging in size from 1 to 3.7 kb, have been reported by Wahli et al. (1978b). This paper reports restriction endonuclease mapping, cross hybridization, heteroduplex mapping in the electron microscope and heteroduplex melting experiments with these DNAs. We conclude that the cloned DNAs fall into two main groups of sequences which differ from each other in approximately 20% of their nucleotides. Each main group contains two subgroups which differ from each other by about 5% sequence divergence. By hybridizing cloned DNAs with restricted genomic DNA, we showed that sequences corresponding to all four sequence groups are present in a single animal. Furthermore, we have obtained tentative evidence for the presence of large intervening sequences in genomic vitellogenin DNA. Analysis of R loop molecules demonstrated that all four sequences are present in the vitellogenin mRNA population purified from individual animals. While some alternate explanations are not entirely excluded, we suggest that vitellogenin is encoded by a small family of related genes in Xenopus.  相似文献   

8.
Gene duplication provides a window of opportunity for biological variants to persist under the protection of a co-expressed copy with similar or redundant function. Duplication catalyzes innovation (neofunctionalization), subfunction degeneration (subfunctionalization), and genetic buffering (redundancy), and the genetic survival of each paralog is triggered by mechanisms that add, compromise, or do not alter protein function. We tested the applicability of three types of mechanisms for promoting the retained expression of duplicated genes in 290 expressed paralogs of the tetraploid clawed frog, Xenopus laevis. Tests were based on explicit expectations concerning the ka/ks ratio, and the number and location of nonsynonymous substitutions after duplication. Functional constraints on the majority of paralogs are not significantly different from a singleton ortholog. However, we recover strong support that some of them have an asymmetric rate of nonsynonymous substitution: 6% match predictions of the neofunctionalization hypothesis in that (1) each paralog accumulated nonsynonymous substitutions at a significantly different rate and (2) the one that evolves faster has a higher ka/ks ratio than the other paralog and than a singleton ortholog. Fewer paralogs (3%) exhibit a complementary pattern of substitution at the protein level that is predicted by enhancement or degradation of different functional domains, and the remaining 13% have a higher average ka/ks ratio in both paralogs that is consistent with altered functional constraints, diversifying selection, or activity-reducing mutations after duplication. We estimate that these paralogs have been retained since they originated by genome duplication between 21 and 41 million years ago. Multiple mechanisms operate to promote the retained expression of duplicates in the same genome, in genes in the same functional class, over the same period of time following duplication, and sometimes in the same pair of paralogs. None of these paralogs are superfluous; degradation or enhancement of different protein subfunctions and neofunctionalization are plausible hypotheses for the retained expression of some of them. Evolution of most X. laevis paralogs, however, is consistent with retained expression via mechanisms that do not radically alter functional constraints, such as selection to preserve post-duplication stoichiometry or temporal, quantitative, or spatial subfunctionalization.  相似文献   

9.
Structure and evolution of the Xenopus laevis albumin genes   总被引:4,自引:0,他引:4  
The 68K and 74K albumin genes of Xenopus laevis arose by duplication approximately 30 million years ago. Electron microscopic analysis showed that both genes contain 15 coding sequences. The lengths of corresponding coding sequences are almost identical and are extremely similar to those of mammalian albumin genes. A block of four coding sequences, which in mammals codes for one protein domain, is repeated three times. The corresponding introns are usually different in length and have therefore diverged as a result of insertion/deletion events. The extensive homology between these gene sequences is neither confined to nor most extensive in the coding sequences and similar amounts of homologous sequences are found in the flanking DNAs as in the gene regions. Various structures were formed in the 5'-flanking DNA by mutually exclusive pairing of different homology regions. Analysis of the two 74K albumin gene sequences isolated suggests that the X. laevis genome may contain one 68K albumin gene and two very closely related 74K albumin genes.  相似文献   

10.
11.
12.
Transcription signals in embryonic Xenopus laevis U1 RNA genes   总被引:27,自引:9,他引:27       下载免费PDF全文
  相似文献   

13.
Using a cDNA clone for the histone H3 we have isolated, from two genomic libraries of Xenopus laevis and Xenopus tropicalis, clones containing four different histone gene clusters. The structural organization of X. laevis histone genes has been determined by restriction mapping, Southern blot hybridization and translation of the mRNAs which hybridize to the various restriction fragments. The arrangement of the histone genes in X. tropicalis has been determined by Southern analysis using X. laevis genomic fragments, containing individual genes, as probes. Histone genes are clustered in the genome of X. laevis and X. tropicalis and, compared to invertebrates, show a higher organization heterogeneity as demonstrated by structural analysis of the four genomic clones. In fact, the order of the genes within individual clusters is not conserved.  相似文献   

14.
Protamines from individual frogs of the subspecies Xenopus laevis laevis were compared by electrophoresis on polyacrylamide gels containing acetic acid, urea, and Triton X-100 to determine if the expression of protamine genes differs among individuals. Two electrophoretic bands, SP2a and SP2b, appeared to be expressed as allelic variants. Of 33 frogs, 19 expressed only SP2a, 11 expressed both SP2a and SP2b, and three expressed only SP2b. Electrophoretic analysis of partial V8 protease digests could not distinguish the peptides released from SP2a and SP2b. Differences in sperm development between individuals were not detected by light or electron microscopy. The results suggest that protamine polymorphism can exist among individuals of a species without an apparent effect on sperm development or sperm function.  相似文献   

15.
Organization of 5S genes in chromatin of Xenopus laevis.   总被引:3,自引:2,他引:3       下载免费PDF全文
The chromatin organization of the genes coding for 5S RNA in Xenopus laevis has been investigated with restriction endonucleases and micrococcal nuclease. Digestion of nuclei from liver, kidney, blood and kidney cells maintained in culture with micrococcal nuclease reveals that these Xenopus cells and tissues have shorter nucleosome repeat lengths than the corresponding cells and tissues from other higher organisms. 5S genes are organized in nucleosomes with repeat lengths similar to those of the bulk chromatin in liver (178 bp) and cultured cells (165 bp); however, 5S gene chromatin in blood cells has a shorter nucleosome repeat (176 bp) than the bulk of the genome in these cells (184 bp). From an analysis of the 5S DNA fragments produced by extensive restriction endonuclease cleavage of chromatin in situ, no special arrangement of the nucleosomes with respect to the sequence of 5S DNA can be detected. The relative abundance of 5S gene multimers follows a Kuhn distribution, with about 57% of all HindIII sites cleaved. This suggests that HindIII sites can be cleaved both in the nucleosome core and linker regions.  相似文献   

16.
To convert animal pole cells of a frog embryo from an ectodermal fate into a neural one, inductive signals are necessary. The alkalizing agent NH4Cl induces the expression of several anterior brain markers and the early pituitary marker XANF-2 in Xenopus animal caps. Here it is demonstrated that NH4Cl also induced proopiomelanocortin (POMC)-expressing cells (the first fully differentiated pituitary cell type) in stage 9 and 10 Xenopus animal caps, and that all-trans retinoic acid, a posteriorizing agent, was able to block this induction when it was administered within 2 h after the start of NH4Cl incubation. Thus, after 2 h, the fate of Xenopus animal cap cells was determined. Microinjection of ribonucleic acid (RNA) encoding noggin, an endogenous neural inducer, led to the induction of POMC gene expression in animal caps of stage 10 embryos, suggesting that noggin represents a candidate mesodermal signal leading to the POMC messenger (m) RNA producing cell type in uncommitted ectoderm. Hence, an alkalizing agent and a neural inducer can generate a fully differentiated POMC cell lineage from Xenopus animal caps.  相似文献   

17.
Abstract. A new recessive nonlethal behavioral mutant, unresponsive (ur), was recovered from a wild-caught Xenopus laevis female by gynogenesis and inbreeding. Mutant embryos do not move until they are three days old, just before feeding begins, in contrast to normal embryos which begin movements at one day, during tailbud stage. Recovery of mutant embryos is complete but slow, requiring another nine days. Grafting analysis suggests that sensory neuron function is normal in homozygous mutant embryos, but that both motorneurons and their target muscles derived from somites are affected by the mutation. Either muscle or motorneurons of unresponsive embryos can participate in normal movements during early development, prior to the stage at which intact mutant embryos recover, in chimerae with normal tissue. Failure of mutant muscle to respond normally to acetylcholine, along with the behavior of chimerae, suggests that mutant embryos do not move because they do not form functional neuromuscular junctions during early development and that the component process of neuromuscular junction formation affected by this mutation is normally performed by both nerve and muscle. during embryogenesis due to a defect in the muscle cells [5]. Armstrong and collaborators [I] have used the immobile mutant to demonstrate that the cholinergic stimulation- induced loss of gap junctions during development does not depend on muscle contraction. In this report, we examine a new mutant of Xenopus laevis, unresponsive (ur), which does not move voluntarily or in response to stimulation until just prior to the feeding stage, after which it recovers.  相似文献   

18.
19.
20.
The tyrosinase family of genes in vertebrates consists of three related members encoding melanogenic enzymes, tyrosinase (Tyr), tyrosinase-related protein-1 (TRP-1, Tyrp1) and tyrosinase-related protein-2 (Dct, TRP-2, Tyrp2). These proteins catalyze melanin production in pigment cells and play important roles in determining vertebrate coloration. This is the first report examining melanogenic gene expression in pigment cells during embryonic development of amphibians. Xenopus provides a useful experimental system for analyzing molecular mechanisms of pigment cells. However, in this animal little information is available not only about the developmental expression but also about the isolation of pigmentation genes. In this study, we isolated homologues of Tyr, Tyrp1 and Dct in Xenopus laevis (XlTyr, XlTyrp1, and XlDct). We studied their expression during development using in situ hybridization and found that all of them are expressed in neural crest-derived melanophores, most of which migrate through the medial pathway, and in the developing diencephalon-derived retinal pigment epithelium (RPE). Further, XlDct was expressed earlier than XlTyr and XlTyrp1, which suggests that XlDct is the most suitable marker gene for melanin-producing cells among them. XlDct expression was detected in migratory melanoblasts and in the unpigmented RPE. In addition, the expression of XlDct was detected in the pineal organ. The sum of these studies suggests that expression of the tyrosinase family of genes is conserved in pigment cells of amphibians and that using XlDct as a marker gene for pigment cells will allow further study of the developmental mechanisms of pigment cell differentiation using Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号