首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since the discovery of ubiquitin-dependent protein degradation almost two decades ago, great strides have been made towards a detailed understanding of the biochemistry of this process (reviewed in [1–3]). It was, however, only in recent years that the physiological role of the ubiquitin system in signal transduction and the regulation of several cell functions started to be appreciated and experimentally addressed. As with other principal mechanisms of signal transduction, such as phosphorylation or GTP hydrolysis, much of the information regarding the role of the ubiquitin system as a component of cell regulation and signaling cascades, was gained in studies of transformation and the control of cell growth. It seems, however, that ubiquitin-dependent proteolysis, and possibly other processes that are controlled by protein ubiquitination, play a role in many aspects of cellular function from the control of differentiation to intracellular trafficking [1,3,4]. Here we will review some of the results that implicate ubiquitin-dependent proteolysis in the control of cell growth and that indicate how perturbations of ubiquitin-dependent degradation of oncogene and tumor suppressor gene products may contribute to cell transformation and oncogenesis.  相似文献   

2.
Thymidine incorporation (reflecting cell division), degradation of long-half-life proteins and protein synthesis were compared in normal Swiss mouse 3T3 fibroblasts and their counterparts transformed by simian virus 40 at both high and low culture densities (no. of cells/cm2). Normal cells maintained faster proteolysis at high culture density than at low. Degradation was in all conditions enhanced by serum deprivation (1% serum). In serum-sufficient (10%) conditions, there was an inverse correlation between degradation and cell division, but in serum-restricted conditions proteolysis increased substantially as culture density was increased, without change in cell division. Protein synthesis generally changed in a converse sense to protein degradation. In serum-sufficient conditions, transformed 3T3 cells failed to regulate proteolysis in response to culture density. However, in serum-restricted conditions they can regulate proteolysis as do normal cells. Transformed 3T3 cells regulate protein synthesis and thymidine incorporation very poorly in response to culture density in both conditions studied. The failure of regulation of both protein synthesis and degradation may contribute to the exaggerated growth of transformed cells in serum-sufficient conditions. The retention by such cells of regulation of proteolysis during serum restriction may also aid their survival. Studies with several lysosomotropic agents indicated that lysosomes contribute to proteolysis in all conditions studied, but also that its regulation in serum restriction is distinct from that in serum sufficiency, and may involve primarily a non-lysosomal mechanism.  相似文献   

3.
Structure, function and regulation of plant proteasomes   总被引:3,自引:0,他引:3  
Kurepa J  Smalle JA 《Biochimie》2008,90(2):324-335
  相似文献   

4.
5.
The multiple biological functions of the small polypeptide ubiquitin are mirrored by its unparalleled conservation on the amino acid and gene organization level. During the last years, it has become widely accepted that ubiquitin is an essential component in the ATP-dependent nonlysosomal protein degradation pathway occurring in all eukaryotic organisms. As turnover, consisting of protein synthesis and disassembly, is a central and vital process for each living cell, ubiquitin-mediated proteolysis is of enormous physiological value. The components of the ubiquitin ligation system have been characterized skillfully in plant and animal cells, but at the moment many questions remain as to how the high degree of specificity that is necessary for the regulation of intracellular breakdown is ensured. The recent hypotheses and models proposed for the basic mechanisms of protein recognition, conjugation and degradation will be discussed in detail. The existence of ubiquitin-protein conjugates which are not rapidly degraded clearly suggested that the role of ubiquitin is not restricted in its implication for protein turnover. Alterations of DNA structure, specific cell recognition mechanisms and cytoskeletal variations were observed as further ubiquitin-dependent processes which are not directly coupled to protein degradation.  相似文献   

6.
Beyond regulating Rap activity, little is known regarding the regulation and function of the Rap GTPase-activating protein Rap1GAP. Tuberin and E6TP1 protein levels are tightly regulated through ubiquitin-mediated proteolysis. A role for these RapGAPs, along with SPA-1, as tumor suppressors has been demonstrated. Whether Rap1GAP performs a similar role was investigated. We now report that Rap1GAP protein levels are dynamically regulated in thyroid-stimulating hormone (TSH)-dependent thyroid cells. Upon TSH withdrawal, Rap1GAP undergoes a net increase in phosphorylation followed by proteasome-mediated degradation. Sequence analysis identified two putative destruction boxes in the Rap1GAP C-terminal domain. Glycogen synthase kinase 3beta (GSK3beta) phosphorylated Rap1GAP immunoprecipitated from thyroid cells, and GSK3beta inhibitors prevented phosphorylation and degradation of endogenous Rap1GAP. Co-expression of GSK3beta and Rap1GAP in human embryonic kidney 293 cells stimulated proteasome-dependent Rap1GAP turnover. Mutational analysis established a role for serine 525 in the regulation of Rap1GAP stability. Overexpression of Rap1GAP in thyroid cells impaired TSH/cAMP-stimulated p70S6 kinase activity and cell proliferation. These data are the first to show that Rap1GAP protein levels are tightly regulated and are the first to support a role for Rap1GAP as a tumor suppressor.  相似文献   

7.
Protein degradation is accomplished by a diverse collection of proteases. Recent studies have illustrated the importance of proteolysis in the control of many aspects of cellular regulation from photosynthesis to photomorphogenesis. In addition, new results point to a role for proteolysis in programmed cell death, circadian rhythm, and defense response in plants.  相似文献   

8.
Published data and the results of the authors’ own studies on the role of intracellular proteolytic enzymes and the metabolic and signaling processes regulated by these enzymes at certain stages of growth and development of salmonid fishes are analyzed in the present review. The major pathways of intracellular proteolysis relying on autophagy, proteasome activity, and calpain activity are considered, as well as the relative contribution of these pathways to proteolysis in skeletal muscle of the fish. Skeletal muscle accounts for more than half of the weight of the fish and undergoes the most significant changes due to the action of anabolic and catabolic signals. Special attention is paid to the intensity of protein degradation during the active growth period characterized by a high rate of protein synthesis and metabolism in fish, as well as to protein degradation during the reproductive period characterized by predomination of catabolic processes in contrast to the growth period. Skeletal muscle plays a unique role as a source of plastic and energy substrates in fish, and, therefore, the process of muscle protein degradation is regarded as a key mechanism for the regulation of growth intensity in juvenile salmon and for maintenance of viability and reproductive capacity of salmonid fish during the maturation of gametes, starvation, and migration related to spawning. The possibility of using a set of parameters of intracellular proteolysis to characterize the early development of salmonids is demonstrated in the review.  相似文献   

9.
Ubiquitin, hormones and biotic stress in plants   总被引:21,自引:0,他引:21  
  相似文献   

10.
Calcium-dependent regulation of intracellular protein degradation was studied in isolated rat skeletal muscles incubated in vitro in the presence of a large variety of agents known to affect calcium movement and distribution. A23187, KC1, sucrose, and 8-(diethylamino)octyl-3,4, 5-trimethoxybenzoate hydrochloride increase proteolysis while tetracaine, verapamil, and low extracellular calcium caused significant decreases. Additionally, dantrolene decreases proteolysis in the presence of depolarizing levels of potassium, while it has no effect on degradation in normal media. The dose dependence of calcium ionophore A23187 on proteolysis and contracture tension are parallel. Furthermore, excess KC1 and hypertonic solutions increased protein degradation at doses reported to cause tension. Thus, the parallel increase in proteolysis and tension in response to various agents supports the hypothesis that protein degradation in muscle is regulated by calcium. To determine the responsible proteolytic systems involved in calcium-dependent degradation, the effect of different classes of protease inhibitors was tested. Addition of the inhibitors leupeptin and E-64-c blocked the A23187-induced increase in degradation. Since proteases sensitive to these agents are present in both the sarcoplasm and lysosomes, known lysosomotropic agents, methylamine and chloroquine, as well as 3-methyladenine, a specific autophagy inhibitor, were used in combination with A23187. These agents did not inhibit calcium ionophore-induced proteolysis, although these three agents selectively inhibited enhanced degradation seen in the absence of insulin, demonstrating an autophagic/lysosomal pathway in these muscles. Thus, our results suggest that nonlysosomal leupeptin- and E-64-c-sensitive proteases are responsible for calcium-dependent proteolysis in muscle.  相似文献   

11.
Protein degradation mediated by ATP-dependent proteases, such as Hsp100/Clp and related AAA+ proteins, plays an important role in cellular protein homeostasis, protein quality control and the regulation of, e.g. heat shock adaptation and other cellular differentiation processes. ClpCP with its adaptor proteins and other related proteases, such as ClpXP or ClpEP of Bacillus subtilis, are involved in general and regulatory proteolysis. To determine if proteolysis occurs at specific locations in B. subtilis cells, we analysed the subcellular distribution of the Clp system together with adaptor and general and regulatory substrate proteins, under different environmental conditions. We can demonstrate that the ATPase and the proteolytic subunit of the Clp proteases, as well as the adaptor or substrate proteins, form visible foci, representing active protease clusters localized to the polar and to the mid-cell region. These clusters could represent a compartmentalized place for protein degradation positioned at the pole close to where most of the cellular protein biosynthesis and also protein quality control are taking place, thereby spatially separating protein synthesis and degradation.  相似文献   

12.
The ubiquitin-proteosome system (UPS) is a non-lysosomal proteolysis system involved in the degradation of irrelevant/misfolded intracellular proteins. The protein substrates of this system are tagged by ubiquitin in sequential reactions that target them for proteasome-dependent destruction. In the developing central nervous system, ubiquitin-mediated proteolysis has recently emerged as an important player in the regulation of neural progenitor proliferation, cell specification, neuronal differentiation, maturation, and migration. E3 ubiquitin ligases are crucial components in the UPS because they provide the specificity that determines which substrates are targeted for ubiquitin-dependent proteolysis. In this review, we discuss the molecular mechanisms of the UPS, focusing primarily on the roles of E3 ligases and their substrates in sequential steps of neurogenesis.  相似文献   

13.
Reuber H35 cells were pulse-labeled with radioactive leucine and the influence of hormones, serum, and amino acids on protein degradation was investigated during a subsequent chase period. Radioactive, immunoprecipitable phosphoenolpyruvate carboxykinase (GTP) (EC 4.1.1.32) had a half-life of 5 to 6 hours which was not influenced by either N6, O2-dibutyryl adenosine 3':5'-monophosphate, dexamethasone, or insulin. The rate of phosphoenolpyruvate carboxykinase degradation was the same under steady state conditions as during the approach to a new steady state following hormonal induction or deinduction of the enzyme. Therefore, hormonal regulation of enzyme activity in vivo is the result of changes in the rate of enzyme synthesis. The rate of proteolysis for total cell proteins was increased under nutritional step-down conditions produced by the removal of serum or amino acids, or both, from the medium. This effect was completely prevented by insulin. Cycloheximide and puromycin, but not actinomycin D or cordycepin, inhibited protein degradation under step-down conditions but did not further decrease the basal rate of proteolysis measured in the presence of either insulin or serum plus amino acids. There was a good correlation between changes in proteolysis produced by serum and amino acids and changes in the degradation rate of phosphoenolpyruvate carboxykinase. Also, inhibition of proteolysis with cycloheximide and puromycin was accompanied by a decrease in the degradation rate for enzyme antigen. It is suggested that nutritional step-down leads either to the synthesis or activation of a proteolytic system.  相似文献   

14.
15.
The coordinated control of extracellular matrix degradation on the cell surface involves three crucial elements: secreted proteases and their inhibitors, surface protease receptors and integral membrane proteases. The roles that each of these elements play in cell surface proteolysis are described. The localization of proteases to the cell surface, protease activation, and regulation of cell surface proteolysis by protease inhibitors are key issues for elucidating the role of membrane proteases in tissue remodeling and tumour invasion.  相似文献   

16.
17.
Ubiquitylation is fundamental for the regulation of the stability and function of p53 and c-Myc. The E3 ligase Pirh2 has been reported to polyubiquitylate p53 and to mediate its proteasomal degradation. Here, using Pirh2 deficient mice, we report that Pirh2 is important for the in vivo regulation of p53 stability in response to DNA damage. We also demonstrate that c-Myc is a novel interacting protein for Pirh2 and that Pirh2 mediates its polyubiquitylation and proteolysis. Pirh2 mutant mice display elevated levels of c-Myc and are predisposed for plasma cell hyperplasia and tumorigenesis. Consistent with the role p53 plays in suppressing c-Myc-induced oncogenesis, its deficiency exacerbates tumorigenesis of Pirh2(-/-) mice. We also report that low expression of human PIRH2 in lung, ovarian, and breast cancers correlates with decreased patients' survival. Collectively, our data reveal the in vivo roles of Pirh2 in the regulation of p53 and c-Myc stability and support its role as a tumor suppressor.  相似文献   

18.
19.
Control of the interferon-induced double-stranded RNA (dsRNA) activated protein kinase (referred to as P68 because of its M(r) of 68,000 in human cells) by animal viruses is essential to avoid decreases in protein synthetic rates during infection. We have previously demonstrated that poliovirus establishes a unique way of regulating the protein kinase, namely by inducing the specific degradation of P68 during infection (T. L. Black, B. Safer, A. Hovanessian, and M. G. Katze, J. Virol. 63:2244-2251, 1989). In the present study we investigated the mechanisms by which P68 degradation occurred. To do this we used an in vitro degradation assay which faithfully reproduced the in vivo events. Although viral gene expression was required for P68 degradation, the major poliovirus proteases, 2A and 3C, were found not to be directly involved with P68 proteolysis. However, the protease responsible for P68 degradation required divalent cations for maximal activity and probably has both an RNA and a protein component since trypsin and ribonuclease abrogated the activity. Despite this requirement for divalent cations and RNA, activation of the kinase was not required for proteolysis since a catalytically inactive P68 was still degraded. Mapping of P68 protease-sensitive sites by using in vitro translated truncation and deletion mutants revealed that sites required for degradation resided in the amino terminus and colocalized to dsRNA-binding domains. Finally, we found that preincubation of cell extracts with the synthetic dsRNA poly(I-C) largely prevented P68 proteolysis, providing additional evidence for the critical role of RNA. On the basis of these data, we present a hypothetical model depicting possible mechanisms of P68 degradation in poliovirus-infected cells.  相似文献   

20.
The ubiquitin (Ub)-dependent proteolytic pathway may function in selective elimination of cellular proteins during erythroid differentiation. Murine erythroleukemia (MEL) cells, which can be induced to differentiate to reticulocytes in culture, may provide a convenient system for studying the role of Ub-dependent proteolysis in erythroid differentiation. The following observations indicate that MEL cells possess an active Ub-dependent proteolytic pathway. (i) Addition of purified Ub to MEL cell fraction II (Ub-depleted lysate) stimulated ATP-dependent degradation of radioiodinated proteins. (ii) Covalent conjugation of carboxyl termini of Ub molecules to substrate protein amino groups is a necessary step in Ub-dependent degradation. Des-glygly-Ub (Ub lacking its carboxyl-terminal glygly moiety) did not stimulate protein degradation in MEL cell fraction II. (iii) The Ub-dependent component of protein degradation in MEL cell fraction II was specifically inhibited by amino acid derivatives that are inhibitors of Ub-protein ligase. (iv) MEL cell fraction II contained apparent homologs of all of the rabbit reticulocyte Ub carrier proteins (E2's) except E2(20K) and E2(230K). Ub-dependent proteolysis was seen only in MEL cell lysates prepared in the presence of leupeptin; an enzyme of the proteolytic pathway was inactivated if leupeptin was omitted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号