首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several anti-cancer drugs are known to bring about their tumoricidal actions by a free radical dependent mechanism. Majority of the studies reported that adriamycin, mitomycin C, bleomycin, etc., augment free radical generation and lipid peroxidation process in vitro. Our results reported here suggest that following chemotherapy both stimulated and unstimulated human polymorphonuclear leukocytes generate increased amounts of superoxide anion and hydrogen peroxide. This was accompanied by increased formation of lipid peroxidation products as measured by thiobarbituric acid assay. These results confirm that many anti-cancer drugs augment free radical generation and lipid peroxidation even in an vivo situation.  相似文献   

2.
Ferritin and superoxide-dependent lipid peroxidation   总被引:23,自引:0,他引:23  
Ferritin was found to promote the peroxidation of phospholipid liposomes, as evidenced by malondialdehyde formation, when incubated with xanthine oxidase, xanthine, and ADP. Activity was inhibited by superoxide dismutase but markedly stimulated by the addition of catalase. Xanthine oxidase-dependent iron release from ferritin, measured spectrophotometrically using the ferrous iron chelator 2,2'-dipyridyl, was also inhibited by superoxide dismutase, suggesting that superoxide can mediate the reductive release of iron from ferritin. Potassium superoxide in crown ether also promoted superoxide dismutase-inhibitable release of iron from ferritin. Catalase had little effect on the rate of iron release from ferritin; thus hydrogen peroxide appears to inhibit lipid peroxidation by preventing the formation of an initiating species rather than by inhibiting iron release from ferritin. EPR spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide was used to observe free radical production in this system. Addition of ferritin to the xanthine oxidase system resulted in loss of the superoxide spin trap adduct suggesting an interaction between superoxide and ferritin. The resultant spectrum was that of a hydroxyl radical spin trap adduct which was abolished by the addition of catalase. These data suggest that ferritin may function in vivo as a source of iron for promotion of superoxide-dependent lipid peroxidation. Stimulation of lipid peroxidation but inhibition of hydroxyl radical formation by catalase suggests that, in this system, initiation is not via an iron-catalyzed Haber-Weiss reaction.  相似文献   

3.
The purpose of this study was to investigate the effects of dietary zinc on free radical generation, lipid peroxidation, and superoxide dismutase (SOD) in exercised mice. In the first part of the study, 48 male weanling mice were randomly divided into three groups. They were fed a zinc-deficient diet containing 1.6 mg/kg zinc or were pair-fed or fed ad libitum a zinc-adequate diet supplemented with 50 mg/kg zinc. Half of each group received an exercise training program that consisted of swimming for 60 min per day in deionized water. The diets and exercise program persisted for 6 weeks. In the second part of the study, 64 mice were fed zinc-deficient diets for 6 weeks, and then one group was fed the zinc-deficient diet for an additional 3 weeks, and the other three groups were fed diets supplemented with 5, 50, and 500 mg/kg zinc, respectively. Half of each group also received the exercise program. Both blood and liver samples were examined. Free radicals in liver were directly detected by electron spin resonance techniques and the extent of lipid peroxidation was indicated by malonic dialdehyde (MDA). Both CuZn-SOD and Mn-SOD were measured. The results showed that exercise training increased the metabolism of zinc, and zinc deficiency induced an increased free radical generation and lipid peroxidation and a decreased hepatic CuZn-SOD activity in exercised mice. Furthermore, although exercise training had no effect on the level of free radicals in zinc-adequate mice, it could increase the hepatic mitochondrial MDA formation further in zinc-deficient animals and zinc deficiency would eliminate the exercise-induced increase in SOD activities which existed in zinc-adequate mice. A total of 50 mg/kg zinc supplemented in the diet was adequate to correct the zinc-deficient status in exercised mice while 5 mg/kg zinc had a satisfactory effect on the recovery of only sedentary zinc-deficient mice. However, 500 mg/kg zinc had a harmful effect on both sedentary and exercised zinc-deficient animals.  相似文献   

4.
5.
Vascular endothelium produces prostacyclin (PG12) and endothelium-derived vascular relaxing factor (EDRF), which are potent vasodilators and hence, may have a role in the regulation of blood pressure. Both PG12 and EDRF are readily degraded by free radicals, especially superoxide anion. Hence, we studied free radical generation and lipid peroxidation in patients with uncontrolled essential hypertension. It was observed that superoxide anion and hydrogen peroxide production by polymorphonuclear leukocytes (PMN) and the levels of lipid peroxides (measured by thiobarbituric acid assay) were higher in uncontrolled hypertensives compared to controls. Both free radical generation and the levels of lipid peroxides reverted to normal values when assayed after the control of hypertension. The calcium antagonist, verapamil, and beta-1 blocker, metoprolol, at the doses used inhibited free radical generation by phorbolmyristate acetate-stimulated PMNs. On the other hand, angiotensin II augmented free radical generation in normal PMN. In addition, it was also observed that both linoleic acid and arachidonic acid levels are low in the plasma of patients with hypertension compared to controls. These results suggest that increase in free radical generation by PMN and alterations in the plasma concentrations of essential fatty acids are closely associated with uncontrolled hypertension.  相似文献   

6.
NADPH-menadione reductase activity by rat brain microsomes (Ms) was decreased 40-50% by 10 microM dicumarol, a potent inhibitor of DT-diaphorase, whereas no change in NADPH-paraquat (PQ) and -diquat (DQ) reductase activity was observed. NADPH-DQ reductase activity in brain Ms was 2.5-fold higher than NADPH-PQ reductase activity. The formation of PQ and DQ radicals was verified optically and observed directly by ESR spectroscopy in the NADPH-PQ and -DQ reductase reactions by brain Ms under anaerobic conditions. PQ- and DQ-induced superoxide formation was confirmed by the detection of DMPO-OOH ESR signals and followed by chemiluminescence (CL) of a Cypridina luciferin analogue (CLA). The kinetics and intensity of the CL were consistent with the observations that the reduction in DQ is faster than that in PQ. Thiobarbituric acid reactive substances (TBARS) and phospholipid hydroperoxides in brain Ms increased in the presence of NADPH and Fe3+. The generation of both lipid peroxidation products derived from brain Ms decreased with increasing concentrations of PQ and DQ. The inhibitory effect of DQ is more pronounced than that of PQ. The formation of PQ- and DQ-induced reactive oxygen species was not associated with lipid peroxidation in rat brain Ms.  相似文献   

7.
Ferritin, a physiological iron donor for microsomal lipid peroxidation   总被引:3,自引:0,他引:3  
J F Koster  R G Slee 《FEBS letters》1986,199(1):85-88
In the process of lipid peroxidation of microsomes induced either by oxygen radicals generated by xanthine oxidase or by NADPH, ferritin is able to donate the necessary iron. The amount of ferritin necessary to catalyze the process of lipid peroxidation is in the physiological range. In contrast to the finding with phospholipid liposomes, catalase hardly stimulates the lipid peroxidation of microsomes.  相似文献   

8.
Two substances which are products of the isoprenoid pathway, can participate in lipid peroxidation. One is digoxin, which by inhibiting membrane Na(+)-K+ ATPase, causes increase in intracellular Ca2+ and depletion of intracellular Mg2+, both effects contributing to increase in lipid peroxidation. Ubiquinone, another products of the pathway is a powerful membrane antioxidant and its deficiency can also result in defective electron transport and generation of reactive oxygen species. In view of this and also in the light of some preliminary reports on alteration in lipid peroxidation in neuropsychiatric disorders, a study was undertaken on the following aspects in some of these disorders (primary generalised epilepsy, schizophrenia, multiple sclerosis, Parkinson's disease and CNS glioma)--1) concentration of digoxin, ubiquinone, activity of HMG CoA reductase and RBC membrane Na(+)-K+ ATPase 2) activity of enzymes involved in free radical scavenging 3) parameters of lipid peroxidation and 4) antioxidant status. The result obtained indicates an increase in the concentration of digoxin and activity of HMG CoA reductase, decrease in ubiquinone levels and in the activity of membrane Na(+)-K+ ATPase. There is increased lipid peroxidation as evidenced from the increase in the concentration of MDA, conjugated dienes, hydroperoxides and NO with decreased antioxidant protection as indicated by decrease in ubiquinone, vit E and reduced glutathione in schizophrenia, Parkinson's disease and CNS glioma. The activity of enzymes involved in free radical scavenging like SOD, catalase, glutathione peroxidase and glutathione reductase is decreased in the above diseases. However, there is no evidence of any increase in lipid peroxidation in epilepsy or MS. The role of increased operation of the isoprenoid pathway as evidenced by alteration in the concentration of digoxin and ubiquinone in the generation of free radicals and protection against them in these disorders is discussed.  相似文献   

9.
10.
This study for the first time confirmed the peroxidative role of the Amadori product derived from the glycation of phosphatidylethanolamine (PE), namely Amadori-PE. The product was synthesized from the reaction of dioleoyl PE with D-glucose, and then purified by a solid-phase extraction procedure, which was a key step in the next HPLC technique for the isolation of essentially pure Amadori-PE. When the synthetically prepared Amadori-PE was incubated with linoleic acid in the presence of Fe(3+) in micellar system, a remarkable formation of thiobarbituric acid reactive substances was observed together with increases in lipid hydroperoxides. In addition, the lipid peroxidation caused by Amadori-PE was effectively inhibited by superoxide dismutase, mannitol, catalase and metal chelator. These results indicated that Amadori-PE triggers oxidative modification of lipids via the generation of superoxide, and implied the involvement of 'lipid glycation' along with membrane lipid peroxidation in the pathogenesis of diabetes and aging.  相似文献   

11.
Low density lipoprotein (LDL) has been reported to be injurious or toxic to cells in vitro. This injurious effect is, in some instances, due to oxidation of the lipid moiety of the lipoprotein. The objectives of this study were to determine if the oxidation rendering the lipoprotein toxic to human skin fibroblasts occurred by free radical mechanisms, and if so, which of the common free radical oxygen species were involved. The selective free radical blockers or scavengers employed included superoxide dismutase for superoxide, catalase for hydrogen peroxide, dimethylfuran for singlet molecular oxygen, and mannitol for hydroxyl radical. The presence during lipoprotein preparation of general free radical scavengers (vitamin E, butylated hydroxytoluene) or the divalent cation chelator ethylenediamine tetraacetic acid prevented the formation of cytotoxic low density lipoprotein, while the simultaneous presence of superoxide dismutase and catalase partially inhibited its formation. The results indicate that superoxide and/or hydrogen peroxide are involved in the formation of the toxic LDL lipid. The toxic action of oxidized LDL could not be prevented by inclusion of antioxidants in the culture medium, indicating that an oxidized lipid was responsible for cell injury rather than free radicals generated in culture by the action of oxidized LDL. Three separate assays for cell injury (enumeration of attached cells, cell loss of lactate dehydrogenase into the culture medium, and trypan blue uptake) indicated a sequence of events in which the fibroblasts are injured, die, and then detach.  相似文献   

12.
The Cr(VI)-mediated free radical generation from cystein, penicillamine, hydrogen peroxide, and model lipid hydroperoxides was investigated utilizing the electron spin resonance (ESR) spin trapping technique. Incubation of Cr(VI) with cysteine (Cys) generated cysteinyl radical. Radical yield depended on the relative concentrations of Cr(VI) and Cys. The radical generation became detectable at a cysteine: Cr(VI) ration of about 5, reached its highest level at a ratio of 30, and declined thereafter. Cr(VI) or Cys alone did not generate a detectable amount of free radicals. Similar results were obtained with penicillamine. Incubation of Cr(VI), Cys or penicillamine adn H2O2 led to hydroxyl (·OH) radical generation, which was verified by quantitative competition experiments utilizing ethanol. The mechanism for ·OH radical generation is considered to be a Cr(VI)-mediated Fenton-like reaction. When model lipid hydroperoxides such as t-butylhydroperoxide and cumene hydroperoxide were used in place of H2O2, hydroperoxide-derived free radicals were produced. Since thiols, such as Cys, exist in cellular systems at relatively high concentrations, Cr(VI)-mediated free radical generation in the presence of thiols may participate in the mechanisms of Cr(VI)-induced toxicity and carcinogenesis.  相似文献   

13.
14.
Kidney weight was significantly decreased in hypothyroidism (induced by Na131I administration) and increased in hyperthyroidism (induced by thyroxine treatment) as compared to control in female Wistar rats. The tissue lipid peroxidation level remained unchanged in hyperthyroid rats but significantly increased in hypothyroid rats. Superoxide dismutase was decreased in both experimental groups but more so in hyperthyroid rats. Catalase was reduced significantly in hyperthyroid rats but remained unaffected in hypothyroid rats. Tissue glutathione peroxidase (GPx) activity was increased while reduced glutathione levels remained unaltered in both hypothyroid and hyperthyroid rats. Plasma GPx activity was significantly low in both the hypothyroid and hyperthyroid rats. The results suggest alterations in the oxidative stress in hypothyroid and hyperthyroid rat kidneys with concomitant changes of free radical scavengers.  相似文献   

15.
The fragmentation of the membrane protein monoamine oxidase in submitochondrial particles was induced by defined free radicals during radiolysis and by a system dependent on hydrogen peroxide and a transition metal. By injection of alpha-tocopherol in vivo, the levels of this physiological antioxidant in the mitochondrial preparations could be elevated more than ten-fold. In both radical-generating systems the presence of high levels of alpha-tocopherol in the membrane substantially retarded the protein fragmentation, in parallel with lipid peroxidation. It is suggested that membrane-bound proteins are damaged during lipid peroxidation and that alpha-tocopherol protects cells against both types of damage.  相似文献   

16.
The major damaging factor during and after the ischemic/hypoxic insult is the generation of free radicals, which leads to apoptosis, necrosis, and ultimately cell death. Rubia cordifolia (RC), Fagonia cretica linn (FC), and Tinospora cordifolia (TC) have been reported to contain a wide variety of antioxidants and have been in use in the eastern system of medicine for various disorders. Hippocampal slices were subjected to oxygen-glucose deprivation (OGD) and divided into three groups, control, OGD, and OGD+drug treated. Cytosolic reduced glutathione (GSH), nitric oxide [NO, measured as nitrite (NO2)]. EPR was used to establish the antioxidant effect of RC, FC, and TC with respect to superoxide anion (O*2-), hydroxyl radicals (*OH), nitric oxide (NO) radical, and peroxynitrite anion (ONOO-) generated from pyrogallol, menadione, DETA-NO, and Sin-1, respectively. RT-PCR was performed for the three herbs to assess their effect on the expression of gamma-glutamylcysteine ligase (GCLC), iNOS, and GAPDH gene expression. All the three herbs were effective in elevating the GSH levels and expression of the GCLC. The herbs also exhibited strong free radical scavenging properties against reactive oxygen and nitrogen species as revealed by electron paramagnetic resonance spectroscopy, diminishing the expression of iNOS gene. RC, FC, and TC therefore attenuate oxidative stress mediated cell injury during OGD and exert the above effects at both the cytosolic as well as at gene expression levels and may be effective therapeutic tool against ischemic brain damage.  相似文献   

17.
Several studies have shown that hypoxia induces alterations in the lipid membranes of many cell types. The mechanism of these changes might consist in membrane lipid peroxidation. Lipid peroxidation in erythrocytes and spleen is easily detected by measurement of the concentration of fluorescent end-products. Exposure of rats to hypoxia for various time periods induced formation of lipophilic fluorescent products both in erythrocytes and spleen. A new kind of fluorophore was found in chloroform extracts from erythrocytes with excitation maximum at 270 nm and emission maximum at 310 nm. Additionally, two minor fluorophores were observed, emitting at 360 nm and in the region of 415-440 nm. Only one type of fluorophore was detected in spleen, emitting at 445 nm after excitation at 315 nm. The concentration of fluorophores was dependent on the time of hypoxic exposure both in erythrocytes and spleen. In erythrocytes there was a decrease of the predominant fluorophore after 3 hours (54%, P < 0.05) and 21 days (54%, P < 0.05) of hypoxia in relation to normoxic controls, accompanied by changes in spectral patterns of tridimensional fluorescence spectra. There was also a significant increase in the concentration of fluorophore in spleen (to 164%, P < 0.05, after 3 h, and to 240%, P < 0.05, after 21 days). The fluorophores, both in erythrocytes and spleen, were resolved into several distinct fractions with HPLC. The presented results support the hypothesis of hypoxia-induced lipid peroxidation and create a basis for further characterization of the fluorescent products.  相似文献   

18.
Curcumin (diferuloylmethane) is the most active component of turmeric. It is believed that curcumin is a potent antioxidant and anti-inflammatory agent. Experimental studies with diabetic animals demonstrate that curcumin supplementation can suppress cataract development and collagen cross-linking, promote wound healing, and lower blood lipids and glucose levels. The mechanism by which curcumin may cause diabetes-associated vascular damage to regress is not known. Erythrocytes were treated with high levels of glucose (mimicking diabetes) in the presence or absence of curcumin (0-10 muM) in the medium at 37 degrees C for 24 h. This study demonstrates that curcumin prevents protein glycosylation and lipid peroxidation caused by high glucose levels using an erythrocyte cell model. This study also suggests that curcumin may inhibit oxygen radical production caused by high glucose concentrations in a cell-free system, and increase glucose utilization in erythrocytes. This provides evidence for a novel mechanism by which curcumin supplementation may prevent the cellular dysfunction associated with diabetes.  相似文献   

19.
Membrane lipid peroxidation, activity of free radical scavangers and ethylene evolution of Amaranthus lividus seedlings were used to determine the lead and cadmium (1, 10, 100 and 1000 μM) induced phytotoxicity. Malondialdehyde (MDA) accumulation and higher lipoxygenase activity (LOX) was found in the 7-d-old treated seedlings. The activities of free radical scavangers like peroxidase, catalase and superoxide dismutase declined considerably with the concomitant rise in hydrogen peroxide level. Heavy metal treatment also caused decline in ethylene evolution in germinating seedlings. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
The technique of free radical spin trapping has been applied to demonstrate the formation of free radicals produced during the metabolism of halothane by rat liver hepatocytes under hypoxic conditions. The results obtained support previous findings that reported sex differences in the metabolic activation of halothane by rats in vivo. Cell viability under hypoxic conditions, as judged by trypan blue staining and lactate dehydrogenase release, shows a correlation with the extent of metabolism of halothane as measured by electron spin resonance spectroscopy. The extent of lipid peroxidation was measured by diene conjugation, malondialdehyde production and chemiluminescence. The latter technique allowed the demonstration of lipid peroxidation during incubations of hepatocytes under aerobic conditions. The magnitude of the aerobic chemiluminescence showed a similar sex dependency to the extent of free radical formation under hypoxic conditions. Cell viability measurements show that halothane metabolism in both hypoxic and aerobic conditions can lead to cell death. Consequently, oxidative lipid damage could be a cause of cell damage, as judged by cell viability, additional to covalent binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号