首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phosphatidylglycerol and chilling sensitivity in plants   总被引:15,自引:6,他引:9       下载免费PDF全文
The hypothesis that molecular species of thylakoid phosphatidylglycerol containing two saturated fatty acids (disaturated phosphatidylglycerol) confer chilling sensitivity upon plants was tested by analyzing the fatty acid composition of phosphatidylglycerols isolated from leaves of a range of plants expected to have different sensitivities to chilling temperatures.

`Saturated' fatty acids (palmitate plus stearate plus hexadeca-trans-3-enoate) as a proportion of total phosphatidylglycerol fatty acids varied from 51 to 80 mole per cent in the plants analyzed but appeared to be rigidly fixed for a given plant species, being unaffected by leaf maturity or by environment.

Hexadeca-trans-3-enoate occurred only at the sn-2 position, whereas C-18 fatty acids occurred only at the sn-1 position of thylakoid phosphatidylglycerol. Therefore, the proportion of disaturated molecular species could be predicted accurately from the total fatty acids of phosphatidylglycerol.

Disaturated molecular species accounted for <25% of the total phosphatidylglycerol from leaves of chilling-resistant plants and for 50 to 60% of the phosphatidylglycerol in leaves from some of the most chilling-sensitive plants. However, not all chilling-sensitive plants contained high proportions of disaturated phosphatidylglycerol; solanaceous and other 16:3-plants and C4 grasses may be important exceptions. Nonetheless, proportions of disaturated phosphatidylglycerol increased concomitantly with increasing chilling sensitivity of plants within a genus.

  相似文献   

2.
Sparace SA  Mudd JB 《Plant physiology》1982,70(5):1260-1264
Intact chloroplasts from spinach (Spinacia oleracea L., hybrid 424) readily incorporate [14C]glycerol-3-phosphate and [14C]acetate into diacylglycerol, monoacylglycerol, diacylglycrol, free fatty acids (only when acetate is the precursor), phosphatidic acid, phosphatidylcholine, and most notably phosphatidylglycerol. The fraction of phosphatidylglycerol synthesized is greatly increased by the presence of manganese chloride in the reaction mixture. Glycerol-3-phosphate-labeled phosphatidylglycerol is equally labeled in the two glycerol moieties of the molecule. Acetate-labeled phosphatidylglycerol is equally labeled in both acyl groups. Position one contains primarily oleate, linoleate and small amounts of palmitate. Position two contains primarily palmitate. No radioactive trans3-hexadecenoate was detected. The labeling patterns indicate that the radioactive phosphatidylglycerol is the product of de novo chloroplast lipid biosynthesis and furthermore, phosphatidylglycerol may be a substrate for fatty acid desaturation.  相似文献   

3.
Isolated intact pea chloroplasts synthesized phosphatidylglycerol from either [14C]acetate or [14C]glycerol 3-phosphate. Both time-course and pulse-chase labeling studies demonstrated a precursor-product relationship between newly synthesized phosphatidic acid and newly synthesized phosphatidylglycerol.

The synthesis both of CDP-diacylglycerol from exogenous phosphatidic acid and CTP, and of phosphatidylglycerol from exogenous CDP-diacylglycerol and glycerol 3-phosphate, could be assayed in fractions obtained from disrupted chloroplasts. Moreover, the enzymes catalyzing these reactions were localized in the inner envelope membrane. Exogenous phosphatidic acid was incorporated into phosphatidylglycerol, but only following its incorporation into CDP-diacylglycerol. Finally, radio-active phosphatidic acid synthesized in the envelope membranes from [14C]palmitoyl-ACP and 1-oleoyl-glycerol 3-phosphate was sequentially incorporated into labeled CDP-diacylglycerol and phosphatidylglycerol upon the addition of appropriate substrates and cofactors. Thus, we have demonstrated that (a) the synthesis of phosphatidylglycerol in chloroplasts occurs by the pathway: phosphatidic acid → CDP-diacylglycerol →→ phosphatidylglycerol, and (b) phosphatidylglycerol synthesis is located in the inner envelope membrane.

  相似文献   

4.
Ornithinyl ester of phosphatidyl glycerol was found to accumulate in Mycobacterium 607 under acidic conditions (pH 5.6) of growth or in cultures of ultraviolet-irradiated (320 to 420 nm) bacilli. There was a corresponding decrease in cardiolipin content of the organisms under these conditions.  相似文献   

5.
The total phospholipid content of Bacillus stearothermophilus was constant during exponential growth, increased during the transition from the exponential to stationary phase of growth, and then slowly increased during the stationary phase. The first increase was a result of an increase in phosphatidylethanolamine; the second was a result of an increase in cardiolipin. Cessation of aeration of an exponentially growing culture or suspension in a nongrowth medium resulted in an immediate reduction in the rate of total phospholipid and phosphatidylethanolamine synthesis and a quantitative conversion of phosphatidylglycerol to cardiolipin. Cardiolipin appeared to be synthesized by the direct conversion of two molecules of phosphatidylglycerol to cardiolipin. After a 20-min pulse of (32)P, phosphatidylglycerol showed the most rapid loss of (32)P followed by cardiolipin, whereas phosphatidylethanolamine did not lose (32)P. The loss of (32)P from the total lipid pool, phosphatidylglycerol, and cardiolipin was biphasic, with rapid loss during the first two bacterial doublings followed by a greatly reduced rate of loss. The major loss of (32)P from the total phospholipid pool appeared to be by breakdown of cardiolipin. The loss of (32)P from the lipid pool was energy dependent (i.e., did not occur under anaerobic conditions or in the absence of an energy source) and was dependent on some factor other than the concentration of cardiolipin in the cells. The apparent conversion of phosphatidylglycerol to cardiolipin was independent of energy metabolism. Chloramphenicol reduced the rate of turnover of both phosphatidylglycerol and cardiolipin. The rate of lipid synthesis (all phospholipid components) was constant for about 10 min after the addition of chloramphenicol but diminished markedly after 20 min. Turnover of (32)P incorporated into phospholipid during a 30-min period prior to the addition of chloramphenicol was more rapid after the removal of chloramphenicol than that of (32)P incorporated during a 30-min period in the presence of chloramphenicol.  相似文献   

6.
Interaction with model phospholipid membranes of lupin seed γ-conglutin, a glycaemia-lowering protein from Lupinus albus seeds, has been studied by means of Fourier-Transform infrared spectroscopy at p2H 7.0 and at p2H 4.5. The protein maintains the same secondary structure both at p2H 7.0 and at p2H 4.5, but at p2H 7.0 a higher 1H/2H exchange was observed, indicating a greater solvent accessibility. The difference in Tm and TD1/2 of the protein at the abovementioned p2H's has been calculated around 20 °C. Infrared measurements have been then performed in the presence of DMPG and DOPA at p2H 4.5. DMPG showed a little destabilizing effect while DOPA exerted a great stabilizing effect, increasing the Tm of γ-conglutin at p2H 4.5 of more than 20 °C. Since γ-conglutin at p2H 4.5 is in the monomeric form, the interaction with DOPA likely promotes the oligomerization even at p2H 4.5. Interaction between DMPG or DOPA and γ-conglutin has been confirmed by turbidity experiments with DMPC:DMPG or DOPC:DOPA SUVs. Turbidity data also showed high-affinity binding of γ-conglutin to anionic SUVs made up with DOPA. The molecular features outlined in this study are relevant to address the applicative exploitation and to delineate a deeper comprehension of the natural functional role of γ-conglutin.  相似文献   

7.
8.
During the early stages of sporulation in Saccharomyces cerevisiae, the pH of the acetate sporulation medium rises to values of 8.0 or higher. Associated with this rise in pH is a reduced cell permeability to certain precursors of ribonucleic acid (RNA), deoxyribonucleic acid or protein. Uptake of adenine, alanine, and leucine was optimal at pH 5.6 to 6.0, but sporulation was inhibited when the sporulation medium was buffered below pH 7.0. Cellular impermeability can be largely overcome by adjusting the acetate sporulation medium to pH 6.0 for optimal uptake of 14 C-adenine during short pulses without any apparent effect on sporulation. Sporulating cells pulse-labeled 20 min at pH 6.0 incorporated 40 times more 14C-adenine into RNA than sporulating cells pulse-labeled at pH 8.0. This increased incorporation can be attributed to a 100-fold increase in labeled adenosine triphosphate in cells pulse-labeled at pH 6.0 where maximum uptake occurs.  相似文献   

9.
Proton motive force during growth of Streptococcus lactis cells   总被引:38,自引:20,他引:18       下载免费PDF全文
Experiments with the aerotolerant anaerobe Streptococcus lactis provide the opportunity for determining the proton motive force (Δp) in dividing cells. The two components of Δp, ΔΨ (the transmembrane potential) and ΔpH (the chemical gradient of H+), were determined by the accumulation of radiolabeled tetraphenylphosphonium (TPP+) and benzoate ions. The ΔΨ was calibrated with the K+ diffusion potential in starved, valinomycin-treated cells. With resting, glycolyzing cells, the Δp was measured also by the accumulation of the non-metabolizable sugar thiomethyl-β-galactoside (TMG). In resting cells the Δp, calculated either by adding ΔΨ and ZΔpH or from the levels of TMG, was relatively constant between pH 5 to 7, decreasing from 160 to 150 mV and decreasing further to 100 mV at pH 8.0. With the TPP+ probe for ΔΨ, we confirmed our previous finding that the K+ ions dissipate ΔΨ and increase ΔpH, whereas Na+ ions have little effect on ΔΨ and no effect on ΔpH. [3H]TPP+ and [14C]benzoate were added during exponential phase to S. lactis cells growing at pH 5 to 7 at 28°C in a defined medium with glucose as energy source. As with resting cells, the ΔpH and ΔΨ were dependent on the pH of the medium. At pH 5.1, the ΔpH was equivalent to 60 mV (alkaline inside) and decreased to 25 mV at pH 6.8. The ΔΨ increased from 83 mV (negative inside) at pH 5.1 to 108 mV at pH 6.8. The Δp, therefore, was fairly constant between pH 5 and 7, decreasing from 143 to 133 mV. The values for Δp in growing cells, just as in resting cells, are consistent with a system in which the net efflux of H+ ions is effected by a membrane-bound adenosine triphosphatase and glycolytically generated adenosine triphosphate. The data suggest that in both growing and resting cells the pH of the medium and its K+ concentration are the two principal factors that determine the relative contribution of ΔpH and ΔΨ to the proton motive force.  相似文献   

10.
Sodium nitrite alone has been shown to stimulate germination of PA 3679h spores. The process was accelerated by using increased concentrations of sodium nitrite, a low pH, and a high temperature of incubation. At low concentrations of nitrite (0.01 to 0.2%), the delay of 36 to 48 hr occurred before germination commenced at 37 C. However, with 3.45% nitrite at 45 C and pH 6.0, most of the spores germinated within 1 hr. At pH 7.0, the germination rate decreased markedly, and at pH 8.0 it was nil. The greatest acceleration in germination rate occurred near 60 C. Hydroxylamine was completely inhibitory to nitrite-induced germination. Sodium nitrite, in turn, inhibited germination by l-alanine, the degree of inhibition being influenced by nitrite concentration and pH.  相似文献   

11.
12.
MANY normal mammalian cells in culture are sensitive to a growth-inhibitory effect of cellular interaction, evidenced by an almost complete arrest of macromolecular synthesis and cellular division at relatively low population densities (contact inhibition of growth)1. It has, however, been shown that the environmental pH is an important element in this phenomenon2. In the bicarbonate-buffered media ordinarily used for animal cell cultures, an initial alkalinization to pH 7.8–8.0 as a result of CO2 loss is followed by the metabolic acidification of the medium to pH 6.8–7.0, at a rate determined by the population density and the metabolic activity of the specific cell. If, by the use of appropriate non-volatile buffers3,4, cells are kept at or near the pH optimal for the specific strain (H. E., unpublished work), the early contact inhibition of growth does not develop and the cells achieve population densities as much as two to four times greater than those ordinarily observed2.  相似文献   

13.
The subunit MW of Dioscorea bulbifera polyphenol oxidase (MW 115 000 ± 2000) determined by SDS-PAGE is ca. 31 000 indicating that the enzyme is an oligomeric protein with four subunits. Ki values of various inhibitors and their modes of inhibition have been determined with catechol and pyrogallol as substrates. p-Nitrophenol, p-cresol, quinoline and resorcinol are competitive inhibitors of catechol binding while only orcinol and p-nitrophenol behave in the same way towards pyrogallol as substrate. From the effect of pH on Vmax, groups with pK values ca. 4.7 and 6.8 have been identified to be involved in catalytic activity. The Arrhenius activation energy (Ea) at pH 4.0 is 8.9 kcal/mol between 40–65°. At pH 7.0, the value is 22.1 kcal/mol between 40 and 60°. The enthalpies (ΔH) at pH 4.0 and pH 7.0 are 2.3 kcal/mol and 32.4 kcal/mol respectively. The results are discussed considering the conformational changes of the enzyme during substrate binding.  相似文献   

14.
The labeling kinetics of the fatty acids of phosphatidylcholine (PC), phosphatidylglycerol (PG), monogalactosyldiglyceride (MGDG), and digalactosyldiglyceride (DGDG) were examined after 14CO2 feeding and incubation of leaf discs of Vicia faba over 72 hours in continuous light. The results indicate a rapid accumulation and turnover of radioactivity into PC and PG fatty acids (oleic acid in PC and oleic and palmitic acids in PG). Radioactivity accumulates in MGDG and DGDG fatty acids much more slowly and continuously over 72 hours. Most of this activity is found in linoleic and linolenic acids; very little activity is found in the more saturated fatty acids. Little or no desaturation occurs in situ in conjunction with the galactolipids. The results suggest that PC and PG may act as “carriers” for MGDG and DGDG fatty acid synthesis. Analyses of the labeling patterns of the molecular species of MGDG after 14CO2 and 14C-acetate feeding confirm that MGDG is formed by galactosylation of a preformed diglyceride containing predominantly unsaturated fatty acids.  相似文献   

15.
《FEBS letters》2014,588(9):1680-1685
Phosphatidylglycerophosphate (PGP) synthase, encoded by PGP1 and PGP2 in Arabidopsis, catalyzes a committed step in the biosynthesis of phosphatidylglycerol (PG). In this study, we isolated a pgp1pgp2 double mutant of Arabidopsis to study the function of PG. In this mutant, embryo development was delayed and the majority of seeds did not germinate. Thylakoid membranes did not develop in plastids, mitochondrial membrane structures were abnormal in the mutant embryos, and radiolabeling of phospholipids showed that radioactivity was not significantly incorporated into PG. These results demonstrated that PG biosynthesis is essential for the development of embryos and normal membrane structures of chloroplasts and mitochondria.  相似文献   

16.
A low-molecular-weight human liver acid phosphatase was purified 2580-fold to homogenity by a procedure involving ammonium sulfate fractionation, acid treatment, and SP-Sephadex ion-exchange chromatography with ion-affinity elution. The purified enzyme contains a single polypeptide chain and has a molecular weight of 14,400 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amino acid composition of this enzyme (E) is reported. A pH dependence study using p-nitrophenyl phosphate as a substrate (S) revealed the effect of substrate ionization (pKa 5.2) and the participation of a group in the ES complex having a pKa value of 7.8. The enzyme is readily inactivated by sulfhydryl reagents such as heavy metal ions. Alkylation of the enzyme with iodoacetic acid and iodoacetamide causes complete inactivation of the enzyme and this inactivation is prevented by the presence of phosphate ion. The enzyme is also inactivated by treatment with diethyl pyrocarbonate; protection against this reagent is afforded by phosphate ion. The substrate specificity of this enzyme is unusual for an acid phosphatase. Of the many alkyl and aryl phosphomonoesters tested, the only possibly physiological substrate hydrolyzed by this enzyme was flavin mononucleotide, which exhibits a V which is 3-fold larger at pH 5.0 and 6-fold larger at pH 7.0 than that for p-nitrophenyl phosphate. However, the enzyme also catalyzes the hydrolysis of acetyl phosphate at pH 5.0 with a velocity eight times larger than that reported for an acyl phosphatase from human erythrocytes.  相似文献   

17.
The formation of Compounds II and III of horseradish peroxidase from Compound I and potassium ferrocyanide and from Compound II and excess hydrogen peroxide, respectively, was studied as a function ofpH at 25°C and a constant ionic strength of 0.11. The yield of Compound II obtained increases progressively with increase inpH; a mixture of Compounds I and II is produced at acidicpH. Pure Compound III is obtained at allpH values, but the highest yield is obtained atpH values between 6.0 and 7.0. The yield of p-670, formed when Compound III is allowed to stand for 60 min, decreases with increase inpH, while the decay of Compound III also decreases with increase inpH. Therefore p-670 is the decay product of Compound III.  相似文献   

18.
Exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans were purified 156-fold and 178-fold, respectively, by gel filtration chromatography on Sephadex G-200. The activities of both enzymes coincided in a single protein peak. Profiles of the two activities also coincided in diethylaminoethyl-cellulose chromatography and zonal centrifugation. These studies indicated that the esterase and the lyase were either complexed or similar molecular species. The former seems more probable because of the relatively high molecular weight. Both activities were most stable at pH 6.0. The esterase was inactivated rapidly at pH 5 or 7. Lyase preparations were freed of pectinesterase activity by heating for 30 min at 38 C and pH 7.0.  相似文献   

19.
Summary Bilayer membranes were prepared with the negatively charged lipids phosphatidylglycerol and diphosphatidylglycerol, the positively charged lipid lysyl phosphatidylglycerol, the zwitterionic lipid phosphatidylethanolamine, and an uncharged glycolipid, diglucosyldiglyceride, all isolated from gram-positive bacteria. Bilayer membranes of all these lipids manifested specific resistances of 107 to 109 cm2 and capacitances of 0.3 to 0.4 F cm–2. The membrane potentials of these bilayers were measured as a function of the sodium chloride, potassium chloride, and hydrogen chloride transmembrane concentration gradients (0.01 to 0.10m) and were found to be linear with the logarithm of the salt activity gradients. Membranes made from lysyl phosphatidylglycerol (one net positive charge) were almost completely chloride selective, whereas membranes from phosphatidylglycerol and diphosphatidylglycerol (one and two net negative charges, respectively) were highly cation selective. Membranes prepared with either diglucosyldiglyceride or phosphatidylethanolamine showed only slight cation selectivity. These findings indicate that the charge on the polar head group of membrane lipids plays an important role in controlling the ion-selective permeability of the bilayer.  相似文献   

20.
《Phytochemistry》1986,25(6):1293-1295
The fatty acid composition of phosphatidylglycerol and sulphoquinovosyldiacylglycerol from the leaves and fruits of five chilling-sensitive plants has been analysed. The sum of the contents of hexadecanoic acid, octadecanoic acid and trans-3-hexadecenoic acid in the phosphatidylglycerols from the leaves and fruit tissue of each plant is very similar. The sum of the contents of hexadecanoic and octadecanoic acids in sulphoquinovosyldiacylglycerol also appears to be closely related in leaves and fruits from the same plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号