首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《The Journal of cell biology》1984,99(4):1275-1281
The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior to their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. These results suggest that there may be a relationship between the sensitivity of xeroderma pigmentosum cells from each complementation group to specific DNA damaging agents and their inability to regulate nucleotide excision repair during cell stimulation.  相似文献   

3.
Immediate fragmentation of parental DNA by near-ultraviolet irradiation at 313 nm was measured in cultured skin fibroblasts from normal individuals, patients with Xeroderma pigmentosum of complementation group A (XPA) and Xeroderma pigmentosum variants (XPV) by the alkaline elution procedure. For a dose of 2.25 KJm?2 given at Oo fragmentation was comparable in all cell strains. However, fragmentation was strongly increased relative to Oo in XPV but not in normal fibroblasts and the XPA strains when irradiation was carried out at 37o. From our results it appears that a step in the repair of parental DNA is abnormal in XPV.  相似文献   

4.
The repair of DNA damage produced by 137Cs gamma irradiation was measured with a preparation from Micrococcus luteus containing DNA damage-specific endonucleases in combination with alkaline elution. The frequency of these endonuclease sensitive sites (ESS) was determined after 54 or 110 Gy of oxic irradiation in normal and xeroderma pigmentosum (XP) fibroblasts from complementation groups A, C, D, and G. Repair was rapid in all cell strains with greater than 50% repair after 1.5 h of repair incubation. At later repair times, 12-17 h, more ESS remained in XP than in normal cells. The frequency of excess ESS in XP cells was approximately 0.04 per 10(9) Da of DNA per Gy which was equivalent to 10% of the initial ESS produced. The removal of ESS was comparable in XP cells with normal radiosensitivity and XP3BR cells which have been reported to be moderately radiosensitive.  相似文献   

5.
Cleaver JE 《DNA Repair》2004,3(2):183-187
Most forms of the human hereditary disease xeroderma pigmentation (XP) are due to a defect in nucleotide excision repair of DNA damage in skin cells associated with exposure to sunlight. This discovery by James Cleaver had an important impact on our understanding of nucleotide excision repair in mammals.  相似文献   

6.
Levels of some enzymes acting on DNA in xeroderma pigmentosum   总被引:1,自引:2,他引:1  
We have determined the levels of DNA polymerase, DNA ligase, a DNase acting on single-stranded DNA, an endonuclease making single-strand breaks in double - stranded DNA and polynucleotide kinase in fibroblasts obtained from nine normal persons and from nine patients with Xeroderma Pigmentosum; the pathological lines belong to the different described clinical forms and to the three different complementation groups described so far. All the enzymes are present in the normal lines and in the Xeroderma lines. The levels are quite variable, but the values obtained in the pathological lines lie within the ones observed in the normal population.  相似文献   

7.
8.
R D Wood  P Robins  T Lindahl 《Cell》1988,53(1):97-106
Soluble extracts from human lymphoid cell lines that perform repair synthesis on covalently closed circular DNA containing pyrimidine dimers or psoralen adducts are described. Short patches of nucleotides are introduced by excision repair of damaged DNA in an ATP-dependent reaction. Extracts from xeroderma pigmentosum cell lines fail to act on damaged circular DNA, but are proficient in repair synthesis of ultraviolet-irradiated DNA containing incisions generated by Micrococcus luteus pyrimidine dimer-DNA glycosylase. Repair is defective in extracts from all xeroderma pigmentosum cell lines investigated, representing the genetic complementation groups A, B, C, D, H, and V. Mixing of cell extracts of group A and C origin leads to reconstitution of the DNA repair activity.  相似文献   

9.
Cell survival and induction of endonuclease-sensitive sites in DNA were measured in human fibroblast cells exposed to fluorescent light or germicidal ultraviolet light. Cells from a xeroderma pigmentosum patient were hypersensitive to cell killing by fluorescent light, although less so than for germicidal ultraviolet light. Xeroderma pigmentosum cells were deficient in the removal of fluorescent light-induced endonuclease sites that are probably pyrimidine dimers, and both the xeroderma pigmentosum and normal cells removed these sites with kinetics indistinguishable from those for ultraviolet light-induced sites. A comparison of fluorescent with ultraviolet light data demonstrates that there are markedly fewer pyrimidine dimers per lethal event for fluorescent than for ultraviolet light, suggesting a major role for non-dimer damage in fluorescent light lethality.  相似文献   

10.
Unique DNA repair properties of a xeroderma pigmentosum revertant.   总被引:10,自引:3,他引:10       下载免费PDF全文
A group A xeroderma pigmentosum revertant with normal sensitivity was created by chemical mutagenesis. It repaired (6-4) photoproducts normally but not pyrimidine dimers and had near normal levels of repair replication, sister chromatid exchange, and mutagenesis from UV light. The rate of UV-induced mutation in a shuttle vector, however, was as high as the rate in the parental xeroderma pigmentosum cell line.  相似文献   

11.
We used the bromouracil-photolysis technique to estimate the sizes of the repaired regions in normal human and xeroderma pigmentosum (XP) cells irradiated by gamma-rays aerobically or anoxically. After 1 1/2 hours of incubation, single-strand breaks were repaired and the repaired regions were small--one to two BrUra residues--for cells irradiated aerobically or anoxically. After a 20-hour incubation, the repaired region in normal cells showed a component mimicking U.V.-repair. There were large patches (approximately 30 BrUra residues) in the approximate ratios of one per six chain breaks for aerobic irradiation and one per three chain breaks for anoxic irradiation. XP cells, however, only showed large patches at 20 hours if they had been irradiated aerobically. We could not detect such regions in XP cells irradiated anoxically. These results indicate (1) that some part of ionizing damage mimics excision of U.V. damage in that the repair patches are large and the repair takes an appreciable time; (2) the types of such damage depend on whether the irradiation is done aerobically or anoxically; and (3) XP cells are defective in repairing a component of anoxic damage.  相似文献   

12.
13.
Because of defective nucleotide excision repair of ultraviolet damaged DNA, xeroderma pigmentosum (XP) patients suffer from a high incidence of skin cancers. Cell fusion studies have identified seven XP complementation groups, A to G. Previous studies have implicated the products of these seven XP genes in the recognition of ultraviolet-induced DNA damage and in incision of the damage-containing DNA strand. Here, we express the XPG-encoded protein in Sf9 insect cells and purify it to homogeneity. We demonstrate that XPG is a single-strand specific DNA endonuclease, thus identifying the catalytic role of the protein in nucleotide excision repair. We suggest that XPG nuclease acts on the single-stranded region created as a result of the combined action of the XPB helicase and XPD helicase at the DNA damage site.  相似文献   

14.
15.
16.
UV survival curves of adenovirus 2 using fused, complementing xeroderma pigmentosum (XP) fibroblast strains as virus hosts showed a component with an inactivation slope identical to that given by normal cells. This component was not observed when the fibroblasts were not fused or when fusion involved strains in the same complementation group. Extrapolation of this component indicated that at zero dose 3% of the viral plaque-forming units had infected cells capable of normal repair. These results suggest that 3% of the cells were complementing heterokaryons, a value similar to that actually observed by autoradiographic analysis of UV-induced unscheduled DNA synthesis. Thus, heterokaryons formed from XP fibroblasts belonging to different complementation groups are as capable of restoring biological activity to UV-damaged adenovirus 2 as are normal cells.  相似文献   

17.
Naegeli H  Sugasawa K 《DNA Repair》2011,10(7):673-683
The nucleotide excision repair (NER) system is a fundamental cellular stress response that uses only a handful of DNA binding factors, mutated in the cancer-prone syndrome xeroderma pigmentosum (XP), to detect an astounding diversity of bulky base lesions, including those induced by ultraviolet light, electrophilic chemicals, oxygen radicals and further genetic insults. Several of these XP proteins are characterized by a mediocre preference for damaged substrates over the native double helix but, intriguingly, none of them recognizes injured bases with sufficient selectivity to account for the very high precision of bulky lesion excision. Instead, substrate versatility as well as damage specificity and strand selectivity are achieved by a multistage quality control strategy whereby different subunits of the XP pathway, in succession, interrogate the DNA double helix for a distinct abnormality in its structural or dynamic parameters. Through this step-by-step filtering procedure, the XP proteins operate like a systematic decision making tool, generally known as decision tree analysis, to sort out rare damaged bases embedded in a vast excess of native DNA. The present review is focused on the mechanisms by which multiple XP subunits of the NER pathway contribute to the proposed decision tree analysis of DNA quality in eukaryotic cells.  相似文献   

18.
DNA-binding proteins in human fibroblasts were examined by chromatography on DNA-cellulose columns. By successive chromatography on columns containing native, denatured, and UV-irradiated DNA-cellulose respectively the proteins binding to different types of DNA could be studied. Elution of the columns with sodium chloride followed by polyacrylamide gel electrophoresis allowed several DNA-binding proteins to be identified. All of the major DNA-binding proteins were present in strains of xeroderma pigmentosum cells respectively deficient in excision-repair and post-replication repair of ultraviolet-induced damage.  相似文献   

19.
DNA repair synthesis in 8 explant-outgrowth cultures of epidermal cells isolated from variant and complementation groups A and E of xeroderma pigmentosum (XP) was examined by measuring unscheduled DNA synthesis (UDS) on autoradiographs. The extents of UDS in XP epidermal cells were compared with those in normal epidermal cells obtained from 26 subjects. In both normal and XP epidermal cells, UDS was induced dose-dependently by radiation at doses of 5-20 J/m2. XP epidermal cells showed various extents of defect in DNA repair depending on the type of XP. In XP-A, the extent of UDS in epidermal cells was very low, being seen in only 3-10% of the normal epidermal cells. But epidermal cells isolated from XP-E and XP-variants exhibited relatively high levels of residual DNA repair; i.e., 69-84% of the control in XP-E and 67-85% in XP-variant. The extents of UDS in XP epidermal cells were almost the same as those in fibroblastic cells isolated from the same specimens.  相似文献   

20.
Five complementation groups in xeroderma pigmentosum.   总被引:1,自引:0,他引:1  
A collaborative study was undertaken to determine the relationship between the three DNA repair complementation groups in xeroderma pigmentosum found at Erasmus University, Rotterdam, and the four groups found at the National Institutes of Health, Bethesda. The results of this study reveal that there are five currently known complementation groups in xeroderma pigmentosum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号