首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Question: We provide a method to calculate the power of ordinal regression models for detecting temporal trends in plant abundance measured as ordinal cover classes. Does power depend on the shape of the unobserved (latent) distribution of percentage cover? How do cover class schemes that differ in the number of categories affect power? Methods: We simulated cover class data by “cutting‐up” a continuous logit‐beta distributed variable using 7‐point and 15‐point cover classification schemes. We used Monte Carlo simulation to estimate power for detecting trends with two ordinal models, proportional odds logistic regression (POM) and logistic regression with cover classes re‐binned into two categories, a model we term an assessment point model (APM). We include a model fit to the logit‐transformed percentage cover data for comparison, which is a latent model. Results: The POM had equal or higher power compared to the APM and latent model, but power varied in complex ways as a function of the assumed latent beta distribution. We discovered that if the latent distribution is skewed, a cover class scheme with more categories might yield higher power to detect trend. Conclusions: Our power analysis method maintains the connection between the observed ordinal cover classes and the unmeasured (latent) percentage cover variable, allowing for a biologically meaningful trend to be defined on the percentage cover scale. Both the shape of the latent beta distribution and the alternative hypothesis should be considered carefully when determining sample size requirements for long‐term vegetation monitoring using cover class measurements.  相似文献   

2.
Yi N  Banerjee S  Pomp D  Yandell BS 《Genetics》2007,176(3):1855-1864
Development of statistical methods and software for mapping interacting QTL has been the focus of much recent research. We previously developed a Bayesian model selection framework, based on the composite model space approach, for mapping multiple epistatic QTL affecting continuous traits. In this study we extend the composite model space approach to complex ordinal traits in experimental crosses. We jointly model main and epistatic effects of QTL and environmental factors on the basis of the ordinal probit model (also called threshold model) that assumes a latent continuous trait underlies the generation of the ordinal phenotypes through a set of unknown thresholds. A data augmentation approach is developed to jointly generate the latent data and the thresholds. The proposed ordinal probit model, combined with the composite model space framework for continuous traits, offers a convenient way for genomewide interacting QTL analysis of ordinal traits. We illustrate the proposed method by detecting new QTL and epistatic effects for an ordinal trait, dead fetuses, in a F(2) intercross of mice. Utility and flexibility of the method are also demonstrated using a simulated data set. Our method has been implemented in the freely available package R/qtlbim, which greatly facilitates the general usage of the Bayesian methodology for genomewide interacting QTL analysis for continuous, binary, and ordinal traits in experimental crosses.  相似文献   

3.
Xie M  Simpson DG 《Biometrics》1999,55(1):308-316
This paper develops regression models for ordinal data with nonzero control response probabilities. The models are especially useful in dose-response studies where the spontaneous or natural response rate is nonnegligible and the dosage is logarithmic. These models generalize Abbott's formula, which has been commonly used to model binary data with nonzero background observations. We describe a biologically plausible latent structure and develop an EM algorithm for fitting the models. The EM algorithm can be implemented using standard software for ordinal regression. A toxicology data set where the proposed model fits the data but a more conventional model fails is used to illustrate the methodology.  相似文献   

4.
This paper concerns with the analysis of item response data, which are usually measured on a rating scale and are therefore ordinal. These study items tended to be highly inter‐correlated. Rasch models, which convert ordinal categorical scales into linear measurements, are widely used in ordinal data analysis. In this paper, we improve the current methodology in order to incorporate inter‐item correlations. We have advocated the latent variable approach for this purpose, in combination with generalized estimating equations to estimate the Rasch model parameters. The data on a study of families of lung cancer patients demonstrate the utility of our methods.  相似文献   

5.
Summary This article addresses modeling and inference for ordinal outcomes nested within categorical responses. We propose a mixture of normal distributions for latent variables associated with the ordinal data. This mixture model allows us to fix without loss of generality the cutpoint parameters that link the latent variable with the observed ordinal outcome. Moreover, the mixture model is shown to be more flexible in estimating cell probabilities when compared to the traditional Bayesian ordinal probit regression model with random cutpoint parameters. We extend our model to take into account possible dependence among the outcomes in different categories. We apply the model to a randomized phase III study to compare treatments on the basis of toxicities recorded by type of toxicity and grade within type. The data include the different (categorical) toxicity types exhibited in each patient. Each type of toxicity has an (ordinal) grade associated to it. The dependence among the different types of toxicity exhibited by the same patient is modeled by introducing patient‐specific random effects.  相似文献   

6.
Houseman EA  Coull BA  Betensky RA 《Biometrics》2006,62(4):1062-1070
Genomic data are often characterized by a moderate to large number of categorical variables observed for relatively few subjects. Some of the variables may be missing or noninformative. An example of such data is loss of heterozygosity (LOH), a dichotomous variable, observed on a moderate number of genetic markers. We first consider a latent class model where, conditional on unobserved membership in one of k classes, the variables are independent with probabilities determined by a regression model of low dimension q. Using a family of penalties including the ridge and LASSO, we extend this model to address higher-dimensional problems. Finally, we present an orthogonal map that transforms marker space to a space of "features" for which the constrained model has better predictive power. We demonstrate these methods on LOH data collected at 19 markers from 93 brain tumor patients. For this data set, the existing unpenalized latent class methodology does not produce estimates. Additionally, we show that posterior classes obtained from this method are associated with survival for these patients.  相似文献   

7.
Xie M  Simpson DG  Carroll RJ 《Biometrics》2000,56(2):376-383
This paper discusses random effects in censored ordinal regression and presents a Gibbs sampling approach to fit the regression model. A latent structure and its corresponding Bayesian formulation are introduced to effectively deal with heterogeneous and censored ordinal observations. This work is motivated by the need to analyze interval-censored ordinal data from multiple studies in toxicological risk assessment. Application of our methodology to the data offers further support to the conclusions developed earlier using GEE methods yet provides additional insight into the uncertainty levels of the risk estimates.  相似文献   

8.
Association mapping can be a powerful tool for detecting quantitative trait loci (QTLs) without requiring line-crossing experiments. We previously proposed a Bayesian approach for simultaneously mapping multiple QTLs by a regression method that directly incorporates estimates of the population structure. In the present study, we extended our method to analyze ordinal and censored traits, since both types of traits are common in the evaluation of germplasm collections. Ordinal-probit and tobit models were employed to analyze ordinal and censored traits, respectively. In both models, we postulated the existence of a latent continuous variable associated with the observable data, and we used a Markov-chain Monte Carlo algorithm to sample the latent variable and determine the model parameters. We evaluated the efficiency of our approach by using simulated- and real-trait analyses of a rice germplasm collection. Simulation analyses based on real marker data showed that our models could reduce both false-positive and false-negative rates in detecting QTLs to reasonable levels. Simulation analyses based on highly polymorphic marker data, which were generated by coalescent simulations, showed that our models could be applied to genotype data based on highly polymorphic marker systems, like simple sequence repeats. For the real traits, we analyzed heading date as a censored trait and amylose content and the shape of milled rice grains as ordinal traits. We found significant markers that may be linked to previously reported QTLs. Our approach will be useful for whole-genome association mapping of ordinal and censored traits in rice germplasm collections.  相似文献   

9.
Xu S  Xu C 《Heredity》2006,97(6):409-417
Many economically important characteristics of agricultural crops are measured as ordinal traits. Statistical analysis of the genetic basis of ordinal traits appears to be quite different from regular quantitative traits. The generalized linear model methodology implemented via the Newton-Raphson algorithm offers improved efficiency in the analysis of such data, but does not take full advantage of the extensive theory developed in the linear model arena. Instead, we develop a multivariate model for ordinal trait analysis and implement an EM algorithm for parameter estimation. We also propose a method for calculating the variance-covariance matrix of the estimated parameters. The EM equations turn out to be extremely similar to formulae seen in standard linear model analysis. Computer simulations are performed to validate the EM algorithm. A real data set is analyzed to demonstrate the application of the method. The advantages of the EM algorithm over other methods are addressed. Application of the method to QTL mapping for ordinal traits is demonstrated using a simulated baclcross (BC) population.  相似文献   

10.
In this article, we develop a latent class model with class probabilities that depend on subject-specific covariates. One of our major goals is to identify important predictors of latent classes. We consider methodology that allows estimation of latent classes while allowing for variable selection uncertainty. We propose a Bayesian variable selection approach and implement a stochastic search Gibbs sampler for posterior computation to obtain model-averaged estimates of quantities of interest such as marginal inclusion probabilities of predictors. Our methods are illustrated through simulation studies and application to data on weight gain during pregnancy, where it is of interest to identify important predictors of latent weight gain classes.  相似文献   

11.
Summary In diagnostic medicine, estimating the diagnostic accuracy of a group of raters or medical tests relative to the gold standard is often the primary goal. When a gold standard is absent, latent class models where the unknown gold standard test is treated as a latent variable are often used. However, these models have been criticized in the literature from both a conceptual and a robustness perspective. As an alternative, we propose an approach where we exploit an imperfect reference standard with unknown diagnostic accuracy and conduct sensitivity analysis by varying this accuracy over scientifically reasonable ranges. In this article, a latent class model with crossed random effects is proposed for estimating the diagnostic accuracy of regional obstetrics and gynaecological (OB/GYN) physicians in diagnosing endometriosis. To avoid the pitfalls of models without a gold standard, we exploit the diagnostic results of a group of OB/GYN physicians with an international reputation for the diagnosis of endometriosis. We construct an ordinal reference standard based on the discordance among these international experts and propose a mechanism for conducting sensitivity analysis relative to the unknown diagnostic accuracy among them. A Monte Carlo EM algorithm is proposed for parameter estimation and a BIC‐type model selection procedure is presented. Through simulations and data analysis we show that this new approach provides a useful alternative to traditional latent class modeling approaches used in this setting.  相似文献   

12.
High-dimensional biomarker data are often collected in epidemiological studies when assessing the association between biomarkers and human disease is of interest. We develop a latent class modeling approach for joint analysis of high-dimensional semicontinuous biomarker data and a binary disease outcome. To model the relationship between complex biomarker expression patterns and disease risk, we use latent risk classes to link the 2 modeling components. We characterize complex biomarker-specific differences through biomarker-specific random effects, so that different biomarkers can have different baseline (low-risk) values as well as different between-class differences. The proposed approach also accommodates data features that are common in environmental toxicology and other biomarker exposure data, including a large number of biomarkers, numerous zero values, and complex mean-variance relationship in the biomarkers levels. A Monte Carlo EM (MCEM) algorithm is proposed for parameter estimation. Both the MCEM algorithm and model selection procedures are shown to work well in simulations and applications. In applying the proposed approach to an epidemiological study that examined the relationship between environmental polychlorinated biphenyl (PCB) exposure and the risk of endometriosis, we identified a highly significant overall effect of PCB concentrations on the risk of endometriosis.  相似文献   

13.
Roy J 《Biometrics》2003,59(4):829-836
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.  相似文献   

14.

Background

Heart failure patients with reduced ejection fraction (HFREF) are heterogenous, and our ability to identify patients likely to respond to therapy is limited. We present a method of identifying disease subtypes using high-dimensional clinical phenotyping and latent class analysis that may be useful in personalizing prognosis and treatment in HFREF.

Methods

A total of 1121 patients with nonischemic HFREF from the β-blocker Evaluation of Survival Trial were categorized according to 27 clinical features. Latent class analysis was used to generate two latent class models, LCM A and B, to identify HFREF subtypes. LCM A consisted of features associated with HF pathogenesis, whereas LCM B consisted of markers of HF progression and severity. The Seattle Heart Failure Model (SHFM) Score was also calculated for all patients. Mortality, improvement in left ventricular ejection fraction (LVEF) defined as an increase in LVEF ≥5% and a final LVEF of 35% after 12 months, and effect of bucindolol on both outcomes were compared across HFREF subtypes. Performance of models that included a combination of LCM subtypes and SHFM scores towards predicting mortality and LVEF response was estimated and subsequently validated using leave-one-out cross-validation and data from the Multicenter Oral Carvedilol Heart Failure Assessment Trial.

Results

A total of 6 subtypes were identified using LCM A and 5 subtypes using LCM B. Several subtypes resembled familiar clinical phenotypes. Prognosis, improvement in LVEF, and the effect of bucindolol treatment differed significantly between subtypes. Prediction improved with addition of both latent class models to SHFM for both 1-year mortality and LVEF response outcomes.

Conclusions

The combination of high-dimensional phenotyping and latent class analysis identifies subtypes of HFREF with implications for prognosis and response to specific therapies that may provide insight into mechanisms of disease. These subtypes may facilitate development of personalized treatment plans.  相似文献   

15.
Generalized spatial structural equation models   总被引:1,自引:0,他引:1  
It is common in public health research to have high-dimensional, multivariate, spatially referenced data representing summaries of geographic regions. Often, it is desirable to examine relationships among these variables both within and across regions. An existing modeling technique called spatial factor analysis has been used and assumes that a common spatial factor underlies all the variables and causes them to be related to one another. An extension of this technique considers that there may be more than one underlying factor, and that relationships among the underlying latent variables are of primary interest. However, due to the complicated nature of the covariance structure of this type of data, existing methods are not satisfactory. We thus propose a generalized spatial structural equation model. In the first level of the model, we assume that the observed variables are related to particular underlying factors. In the second level of the model, we use the structural equation method to model the relationship among the underlying factors and use parametric spatial distributions on the covariance structure of the underlying factors. We apply the model to county-level cancer mortality and census summary data for Minnesota, including socioeconomic status and access to public utilities.  相似文献   

16.
传染病给人们的生命带来了极大的威胁,对于高传染性的疾病,政府总会采取一些防护措施.本文针对防护措施下的高传染性且具有潜伏期等特性的一类传染病,结合传染病模型,在一定假设条件下给出了这类疾病单日新收治的直接确诊病例及疑似病例的高维动态模型,并使用最小二乘法进行了参数辨识.最后以SARS为例,利用网上公布的SARS数据给出了5月22日-5月31日的预测结果并将预测结果和实际数据进行了比较,说明了模型的有效性.  相似文献   

17.
Herring AH  Dunson DB  Dole N 《Biometrics》2004,60(4):926-935
Researchers often measure stress using questionnaire data on the occurrence of potentially stress-inducing life events and the strength of reaction to these events, characterized as negative or positive and assigned an ordinal ranking. In studying the health effects of stress, one needs to obtain measures of an individual's negative and positive stress levels to be used as predictors. Motivated by data of this type, we propose a latent variable model, which is characterized by event-specific negative and positive reaction scores. If the positive reaction score dominates the negative reaction score for an event, then the individual's reported response to that event will be positive, with an ordinal ranking determined by the value of the score. Measures of overall positive and negative stress can be obtained by summing the reactivity scores across the events that occur for an individual. By incorporating these measures as predictors in a regression model and fitting the stress and outcome models jointly using Bayesian methods, inferences can be conducted without the need to assume known weights for the different events. We propose an MCMC algorithm for posterior computation and apply the approach to study the effects of stress on preterm delivery.  相似文献   

18.
It has been shown that the inclusion of an isolated class in the classical SIR model for childhood diseases can be responsible for self-sustained oscillations. Hence, the recurrent outbreaks of such diseases can be caused by autonomous, deterministic factors. We extend the model to include a latent class (i.e. individuals who are infected with the disease, but are not yet able to pass the disease to others) and study the resulting dynamics. The existence of Hopf bifurcations is shown for the model, as well as a homoclinic bifurcation for a perturbation to the model. For historical data on scarlet fever in England, our model agrees with the epidemiological data much more closely than the model without the latent class. For other childhood diseases, our model suggests that isolation is unlikely to be a major factor in sustained oscillations.   相似文献   

19.
Statistical methods for linkage analysis are well established for both binary and quantitative traits. However, numerous diseases including cancer and psychiatric disorders are rated on discrete ordinal scales. To analyze pedigree data with ordinal traits, we recently proposed a latent variable model which has higher power to detect linkage using ordinal traits than methods using the dichotomized traits. The challenge with the latent variable model is that the likelihood is usually very complicated, and as a result, the computation of the likelihood ratio statistic is too intensive for large pedigrees. In this paper, we derive a computationally efficient score statistic based on the identity-by-decent sharing information between relatives. Using simulation studies, we examined the asymptotic distribution of the test statistic and the power of our proposed test under various levels of heritability. We compared the computing time as well as power of the score test with the likelihood ratio test. We then applied our method for the Collaborative Study on the Genetics of Alcoholism and performed a genome scan to map susceptibility genes for alcohol dependence. We found a strong linkage signal on chromosome 4.  相似文献   

20.
Although a number of regression models for ordinal responses have been proposed, these models are not widely known and applied in epidemiology and biomedical research. Overviews of these models are either highly technical or consider only a small part of this class of models so that it is difficult to understand the features of the models and to recognize important relations between them. In this paper we give an overview of logistic regression models for ordinal data based upon cumulative and conditional probabilities. We show how the most popular ordinal regression models, namely the proportional odds model and the continuation ratio model, are embedded in the framework of generalized linear models. We describe the characteristics and interpretations of these models and show how the calculations can be performed by means of SAS and S‐Plus. We illustrate and compare the methods by applying them to data of a study investigating the effect of several risk factors on diabetic retinopathy. A special aspect is the violation of the usual assumption of equal slopes which makes the correct application of standard models impossible. We show how to use extensions of the standard models to work adequately with this situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号