首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Iron regulatory protein 1 (IRP1) is a bifunctional protein, which either has aconitase activity or binds to specific mRNA structures to regulate the expression of iron proteins. Using recombinant human IRP1, we found that the two functional forms are resolved by nondenaturing polyacrylamide gel electrophoresis and that they are distinguished from IRP1/RNA complexes. This allowed us to use specific antibodies to develop a blotting system that recognized the iron-free and iron-containing IRP1 forms in the soluble fraction and the RNA-bound IRP1 in the high-speed precipitate fraction of cell extracts. The system was used to study IRP1 in HeLa, K562 cells, and monocytes/macrophages before and after treatment with iron salts, iron chelators, or hydrogen peroxide, as well as in stomach and duodenum biopsies. The results showed that iron-bound aconitase IRP1 is by far the prevalent form in most cells and that the major effect of cellular iron modifications is a shift between free and RNA-bound IRP1. The fraction of RNA-bound IRP1 was highly variable among different cells and was often a minor one. Furthermore, blotting showed that electrophoretic mobility shift assay, as commonly used, tends to under-evaluate the amount of total IRP1 and to over-evaluate the actual RNA-binding activity of IRP1. In conclusion, blotting analysis of IRP1 is a new, useful, and convenient method to analyze the amount and conformations of the protein that reveals previously undetected differences in IRP1 compartmentalization among various cell types.  相似文献   

3.
We report the targeted mutagenesis of the murine iron regulatory protein (IRP)-1 and IRP2 genes, respectively, with a classical gene trap construct. Insertion of the targeting cassette into the second intron of either gene by homologous recombination interrupts their open reading frames near the N termini. Mice that are homozygous for the correctly modified IRP1 or IRP2 alleles, respectively, display a strong reduction (90%, IRP1(-/-)) or nondetectable levels (IRP2(-/-)) of the targeted proteins. Interestingly, the pre-mRNAs transcribed from the identical targeting cassettes are processed differently within the two different contexts. Detailed analysis of the respective products identifies the choice of alternative splice and 3' end processing sites in the same tissues in vivo. We discuss the implications for the understanding of RNA processing and for targeting strategies for functional genomics in the mouse.  相似文献   

4.
A putative crayfish iron-responsive element (IRE) is present in the 5'-untranslated region of the crayfish ferritin mRNA. The putative crayfish IRE is in a cap-proximal position and shares most of the structural features of the consensus IRE, but the RNA stem-loop structure contains a bulge of a guanine instead of a cytosine at the expected position, so far thought to be a hallmark of IREs. By using an electromobility shift assay this IRE was shown to specifically bind purified recombinant human iron regulatory protein 1 (IRP1) as well as a factor(s) present in a homogenate of crayfish hepatopancreas, likely to be a crayfish IRP1 homologue. With mutations in the crayfish IRE, the affinity of IRP to IRE was drastically decreased. A cDNA encoding an IRP1-like protein was cloned from the hepatopancreas of crayfish. This protein has sequence similarities to IRP, and contains all the active-site residues of aconitase, two putative RNA-binding regions and a putative contact site between RNA and IRP. These results show that a crayfish IRE, lacking the bulged C, can bind IRP1 in vitro and that an IRP1-like protein present in crayfish hepatopancreas may have both aconitase and RNA-binding activities.  相似文献   

5.
Iron regulatory protein 2 (IRP2) binds to iron-responsive elements (IREs) to regulate the translation and stability of mRNAs encoding several proteins involved in mammalian iron homeostasis. Increases in cellular iron stimulate the polyubiquitylation and proteasomal degradation of IRP2. One study has suggested that haem-oxidized IRP2 ubiquitin ligase-1 (HOIL-1) binds to a unique 73-amino acid (aa) domain in IRP2 in an iron-dependent manner to regulate IRP2 polyubiquitylation and degradation. Other studies have questioned the role of the 73-aa domain in iron-dependent IRP2 degradation. We investigated the potential role of HOIL-1 in the iron-mediated degradation of IRP2 in human embryonic kidney 293 (HEK293) cells. We found that transiently expressed HOIL-1 and IRP2 interact via the 73-aa domain, but this interaction is not iron-dependent, nor does it enhance the rate of IRP2 degradation by iron. In addition, stable expression of HOIL-1 does not alter the iron-dependent degradation or RNA-binding activity of endogenous IRP2. Reduction of endogenous HOIL-1 by siRNA has no affect on the iron-mediated degradation of endogenous IRP2. These data demonstrate that HOIL-1 is not required for iron-dependent degradation of IRP2 in HEK293 cells, and suggest that a HOIL-1 independent mechanism is used for IRP2 degradation in most cell types.  相似文献   

6.
7.
8.
9.
10.
11.
Iron regulatory proteins (IRPs), the cytosolic proteins involved in the maintenance of cellular iron homeostasis, bind to stem loop structures found in the mRNA of key proteins involved iron uptake, storage, and metabolism and regulate the expression of these proteins in response to changes in cellular iron needs. We have shown previously that HFE-expressing fWTHFE/tTA HeLa cells have slightly increased transferrin receptor levels and dramatically reduced ferritin levels when compared to the same clonal cell line without HFE (Gross et al., 1998, J Biol Chem 273:22068-22074). While HFE does not alter transferrin receptor trafficking or non-transferrin mediated iron uptake, it does specifically reduce (55)Fe uptake from transferrin (Roy et al., 1999, J Biol Chem 274:9022-9028). In this report, we show that IRP RNA binding activity is increased by up to 5-fold in HFE-expressing cells through the activation of both IRP isoforms. Calcein measurements show a 45% decrease in the intracellular labile iron pool in HFE-expressing cells, which is in keeping with the IRP activation. These results all point to the direct effect of the interaction of HFE with transferrin receptor in lowering the intracellular labile iron pool and establishing a new set point for iron regulation within the cell.  相似文献   

12.
13.
14.
IRP1 [iron regulatory protein (IRP) 1] is a bifunctional protein with mutually exclusive end-states. In one mode of operation, IRP1 binds iron-responsive element (IRE) stem–loops in messenger RNAs encoding proteins of iron metabolism to control their rate of translation. In its other mode, IRP1 serves as cytoplasmic aconitase to correlate iron availability with the energy and oxidative stress status of the cell. IRP1/IRE binding occurs through two separate interfaces, which together contribute about two-dozen hydrogen bonds. Five amino acids make base-specific contacts and are expected to contribute significantly to binding affinity and specificity of this protein:RNA interaction. In this mutagenesis study, each of the five base-specific amino acids was changed to alter binding at each site. Analysis of IRE binding affinity and translational repression activity of the resulting IRP1 mutants showed that four of the five contact points contribute uniquely to the overall binding affinity of the IRP1:IRE interaction, while one site was found to be unimportant. The stronger-than-expected effect on binding affinity of mutations at Lys379 and Ser681, residues that make contact with the conserved nucleotides G16 and C8, respectively, identified them as particularly critical for providing specificity and stability to IRP1:IRE complex formation. We also show that even though the base-specific RNA-binding residues are not part of the aconitase active site, their substitutions can affect the aconitase activity of holo-IRP1, positively or negatively.  相似文献   

15.
16.
17.
18.
A special fraction of RNA-binding proteins with a non-specific affinity for RNA is present in the extracts of eukaryotic cells. Earlier these proteins were considered exclusively as a pool of free informosomal proteins. It has been shown that a significant part (about 1/3) of RNA-binding proteins is found in labile association with mono- and polyribosome mass, respectively. The labile-associated proteins dissociate from the complex with mono- and polyribosomes with an increase in the ionic RNA-binding proteins bind to particles due to the non-specific affinity for the exposed part of RNA of mono- and polyribosomes. The decrease of the ionic strength leads to the stabilization of the RNA-binding proteins-polyribosomes complexes and enables purification of these complexes. A direct comparison by the O'Farrell two-dimensional analysis has shown that practically all the proteins that are labile-associated with polyribosomes are present within the preparation of free RNA-binding proteins.  相似文献   

19.
Iron regulatory proteins (IRP) are sequence-specific RNA-binding proteins that mediate iron-responsive gene regulation in animals. IRP1 is also the cytosolic isoform of aconitase (c-aconitase). This latter activity could complement a mitochondrial aconitase mutation (aco1) in Saccharomyces cerevisiae to restore glutamate prototrophy. In yeast, the c-aconitase activity of IRP1 was responsive to iron availability in the growth medium. Although IRP1 expression rescued aco1 yeast from glutamate auxotrophy, cells remained growth-limited by glutamate, displaying a slow-growth phenotype on glutamate-free media. Second site mutations conferring enhanced cytosolic aconitase-dependent (ECA) growth were recovered. Relative c-aconitase activity was increased in extracts of strains harboring these mutations. One of the ECA mutations was found to be in the gene encoding cytosolic NADP(+)-dependent isocitrate dehydrogenase (IDP2). This mutation, an insertion of a Ty delta element into the 5' region of IDP2, markedly elevates expression of Idp2p in glucose media. Our results demonstrate the physiological significance of the aconitase activity of IRP1 and provide insight into the role of c-aconitase with respect to iron and cytoplasmic redox regulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号