首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Phospholamban (PLB) is a pentameric transmembrane protein that regulates the Ca(2+)-dependent ATPase SERCA2a in sarcoplasmic reticulum membranes. We previously described the computational design of a water-soluble variant of phospholamban, WSPLB, which reproduced many of the structural and functional properties of the native membrane-soluble protein. While the full-length WSPLB forms a pentamer in solution, a truncated variant forms very stable tetramers. To obtain insight into the tetramer-pentamer cytoplasmic switch, we solved the crystal structure of the truncated construct, WSPLB 21-52. This peptide has a heptad sequence repeat with Leu residues at a- and Ile at d-positions from residues 31-52. The crystal structure revealed that WSPLB 21-52 adopted an antiparallel tetrameric coiled coil. This topology contrasts with the parallel topology of an analogue of the coiled-coil of GCN4 with the same Leu(a) Ile(d) repeat. Analysis of these structures revealed how the nature of the partially exposed residues at e- and g-positions influence the topology formed by the bundle. We also constructed a model for the pentameric form of PLB using the coiled-coil parameters derived from a single monomer in the tetrameric structure. This model suggests that both buried and interfacial hydrogen bonds are important for stabilizing the parallel pentamer.  相似文献   

2.
The regulation of calcium levels across the membrane of the sarcoplasmic reticulum involves the complex interplay of several membrane proteins. Phospholamban is a 52 residue integral membrane protein that is involved in reversibly inhibiting the Ca(2+) pump and regulating the flow of Ca ions across the sarcoplasmic reticulum membrane during muscle contraction and relaxation. The structure of phospholamban is central to its regulatory role. Using homonuclear rotational resonance NMR methods, we show that the internuclear distances between [1-(13)C]Leu7 and [3-(13)C]Ala11 in the cytoplasmic region, between [1-(13)C]Pro21 and [3-(13)C]Ala24 in the juxtamembrane region and between [1-(13)C]Leu42 and [3-(13)C]Cys46 in the transmembrane domain of phospholamban are consistent with alpha-helical secondary structure. Additional heteronuclear rotational-echo double-resonance NMR measurements confirm that the secondary structure is helical in the region of Pro21 and that there are no large conformational changes upon phosphorylation. These results support the model of the phospholamban pentamer as a bundle of five long alpha-helices. The long extended helices provide a mechanism by which the cytoplasmic region of phospholamban interacts with residues in the cytoplasmic domain of the Ca(2+) pump.  相似文献   

3.
The structure of a 36-amino-acid-long amino-terminal fragment of phospholamban (phospholamban[1-36]) in aqueous solution containing 30% trifluoroethanol was determined by nuclear magnetic resonance. The peptide, which comprises the cytoplasmic domain and six residues of the transmembrane domain of phospholamban, assumes a conformation characterized by two alpha-helices connected by a turn. The residues of the turn are Ile18, Glu19, Met20, and Pro21, which are adjacent to the two phosphorylation sites Ser16 and Thr17. The proline is in a trans conformation. The helix comprising amino acids 22-36 is well determined (the root mean square deviation for the backbone atoms, calculated for a family of 18 nuclear magnetic resonance structures is 0.57 A). Recently, two molecular models of the transmembrane domain of phospholamban were proposed in which a symmetric homopentamer is composed of a left-handed coiled coil of alpha-helices. The two models differ by the relative orientation of the helices. The model proposed by,Simmerman et al. (H.K. Simmerman, Y.M. Kobayashi, J.M. Autry, and L.R. Jones, 1996, J. Biol. Chem. 271:5941-5946), in which the coiled coil is stabilized by a leucine-isoleucine zipper, is similar to the transmembrane pentamer structure of the cartilage oligomeric membrane protein determined recently by x-ray (V. Malashkevich, R. Kammerer, V Efimov, T. Schulthess, and J. Engel, 1996, Science 274:761-765). In the model proposed by Adams et al. (P.D. Adams, I.T. Arkin, D.M. Engelman, and A.T. Brunger, 1995, Nature Struct. Biol. 2:154-162), the helices in the coiled coil have a different relative orientation, i.e., are rotated clockwise by approximately 50 degrees. It was possible to overlap and connect the structure of phospholamban[1-36] derived in the present study to the two transmembrane pentamer models proposed. In this way two models of the whole phospholamban in its pentameric form were generated. When our structure was connected to the leucine-isoleucine zipper model, the inner side of the cytoplasmic domain of the pentamer (where the helices face one another) was lined by polar residues (Gln23, Gln26, and Asn30), whereas the five Arg25 side chains were on the outer side. On the contrary, when our structure was connected to the other transmembrane model, in the inner side of the cytoplasmic domain of the pentamer, the five Arg25 residues formed a highly charged cluster.  相似文献   

4.
Determination of a high-resolution structure of the phospholamban (PLB) transmembrane domain by X-ray crystallography or NMR is handicapped by the hydrophobic nature of the peptide. Interestingly, the crystal structure of the five-stranded parallel coiled-coil oligomerization domain from cartilage oligomeric matrix protein (COMPcc) shows marked similarities to a model proposed for the pentameric transmembrane domain of PLB. Contrary to the putative coiled-coil domain of PLB, COMPcc contains mostly hydrophilic amino acids on the surface, resulting in a soluble molecule. Here, we report the design of soluble PLB transmembrane domain variants by combining the surface residues of COMPcc and the hydrophobic interior of the transmembrane domain of PLB. The soluble PLB variants formed pentameric structures as revealed by analytical ultracentrifugation. After redox shuffling, they showed unspecific disulfide bridge patterns similar to that of the chemically synthesized wild-type PLB transmembrane domain. These results suggest a structural homology between the soluble PLB mutants and the wild-type PLB transmembrane domain. Together with the data reported in the literature, they furthermore indicate that residues Leu37, Ile40, Leu44, and Ile47 of the PLB sequence specify pentamer formation. In contrast, a designed recombinant COMPcc mutant, COMP-ARCC, which was engineered to contain the two PLB cysteines that potentially could form an interchain disulfide bridge, formed a specific disulfide bond pattern. This finding indicates structural differences between the transmembrane domain of PLB and COMPcc. The soluble PLB variants may be used to determine a high-resolution structure of the PLB pentamer by X-ray crystallography.  相似文献   

5.
The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) domains. The peptide corresponding to the amino acids 1-31 of phospholamban (PLN 1-31) decreased the Vmax of the Ca(2+)-dependent ATPase activity in dose-dependent manner, while it had no effect on the affinity of the ATPase for Ca2+ (KCa). On the other hand, the peptide corresponding to the amino acids 28-47 of phospholamban (PLN 28-47) increased the KCa from 0.52 to 1.33 microM without significant change in the Vmax value when reconstituted into vesicles with the ATPase. Essentially the same results as PLN 28-47 were obtained with the peptide corresponding to the amino acids 8-47 of phospholamban (PLN 8-47). The inhibitory effects of PLN 1-31 and PLN 8-47 on the ATPase were reversed by cAMP-dependent phosphorylation of the peptides (Ser16). These results indicate that phospholamban suppresses Ca2+ pump ATPase at two different sites, the cytoplasmic domain for Vmax and the transmembrane domain for KCa, and that cAMP-dependent phosphorylation de-suppresses these inhibitory effects on the ATPase.  相似文献   

6.
Caloxin 2A1 is a novel inhibitor of the plasma membrane (PM) Ca(2+)-pump [Am. J. Physiol. Cell Physiol. 280 (2001) C1027]. The PM Ca(2+)-pump is a Ca(2+)-Mg(2+)-ATPase that expels Ca(2+) from cells to help them maintain low concentrations of cytosolic Ca(2+). Caloxin 2A1 inhibits Ca(2+)-Mg(2+)-ATPase in human erythrocyte leaky ghosts. Here we report that this inhibition is non-competitive with respect to the substrates Ca(2+) and ATP and the activator calmodulin. This was anticipated since the high affinity binding site for Ca(2+) and sites for ATP and calmodulin are intracellular whereas caloxin 2A1 is a peptide selected for binding to the second extracellular domain of the pump. Caloxin 2A1 also inhibited the Ca(2+)-dependent formation of the acid stable 140 kDa acylphosphate intermediate from 32P-gamma-ATP. However, it did not inhibit the formation of the acylphosphate intermediate in the reverse direction-from 32P-orthophosphate. Consistent with results on mutagenesis of transmembrane residues in the pump protein, we suggest that caloxin 2A1 inhibits conformational changes required during the reaction cycle of the pump.  相似文献   

7.
Water-soluble phospholamban (WSPLB) is a designed, water-soluble analogue of the pentameric membrane protein phospholamban (PLB), which contains the same core and interhelical residues as PLB, with only the solvent-exposed positions mutated. WSPLB contains the same secondary and quaternary structure as PLB. The hydrophobic cores of PLB and WSPLB contain Leu and Ile at the a- and d-positions of a heptad repeat (abcdefg) from residues 31-52, while residues 21-30 are rich in polar amino acids at these positions. While the full-length WSPLB forms pentamers in solution, truncated peptides lacking residues 21-30 are largely tetrameric. Thus, truncation of residues 1-20 promotes a switch from pentamer to tetramer formation. Here, the motifs for WSPLB pentamerization were elucidated by characterizing a series of peptides, which were progressively truncated in this polar 'switch' region. When fully present, the 'switch' region promotes pentamer formation in WSPLB, by destabilizing a more stable tetrameric species which exists in its absence. We find that the burial of hydrogen bonding residues from 21 to 30 drives WSPLB from a tetramer to a pentamer, with direct implications for coiled-coil design.  相似文献   

8.
The ability of two loss-of-function mutants, L31A and L31C, of phospholamban (PLB) to bind to and inhibit the Ca(2+) pump of cardiac sarcoplasmic reticulum (SERCA2a) was investigated using a molecular cross-linking approach. Leu(31) of PLB, located at the cytoplasmic membrane boundary, is a critical amino acid shown previously to be essential for Ca(2+)-ATPase inhibition. We observed that L31A or L31C mutations of PLB prevented the inhibition of Ca(2+)-ATPase activity and disabled the cross-linking of N27C and N30C of PLB to Lys(328) and Cys(318) of SERCA2a. Although L31C-PLB failed to cross-link to any Cys or Lys residue of wild-type SERCA2a, L31C did cross-link with high efficiency to T317C of SERCA2a with use of the homobifunctional sulfhydryl cross-linking reagent, 1,6-bismaleimidohexane. This places Leu(31) of PLB within 10 angstroms of Thr(317) of SERCA2a in the M4 helix. Thus, contrary to previous suggestions, PLB with loss-of-function mutations at Leu(31) retains the ability to bind to SERCA2a, despite losing inhibitory activity. Cross-linking of L31C-PLB to T317C-SERCA2a occurred only in the absence of Ca(2+) and in the presence of nucleotide and was prevented by thapsigargin and by anti-PLB antibody, demonstrating for a fourth cross-linking pair that PLB interacts near M4 only when the Ca(2+) pump is in the Ca(2+)-free, nucleotide-bound E2 conformation, but not in the E2 state inhibited by thapsigargin. L31I-PLB retained full functional and cross-linking activity, suggesting that a bulky hydrophobic residue at position 31 of PLB is essential for productive interaction with SERCA2a. A model for the three-dimensional structure of the interaction site is proposed.  相似文献   

9.
The Ca2+-ATPase of cardiac muscle cells transports Ca2+ ions against a concentration gradient into the sarcoplasmic reticulum and is regulated by phospholamban, a 52-residue integral membrane protein. It is known that phospholamban inhibits the Ca2+ pump during muscle contraction and that inhibition is removed by phosphorylation of the protein during muscle relaxation. Phospholamban forms a pentameric complex with a central pore. The solid-state magic angle spinning (MAS) NMR measurements presented here address the structure of the phospholamban pentamer in the region of Gln22-Gln29. Rotational echo double resonance (REDOR) NMR measurements show that the side chain amide groups of Gln29 are in close proximity, consistent with a hydrogen-bonded network within the central pore. 13C MAS NMR measurements are also presented on phospholamban that is 1-13C-labeled at Leu52, the last residue of the protein. pH titration of the C-terminal carboxyl group suggests that it forms a ring of negative charge on the lumenal side of the sarcoplasmic reticulum membrane. The structural constraints on the phospholamban pentamer described in this study are discussed in the context of a multifaceted mechanism for Ca2+ regulation that may involve phospholamban as both an inhibitor of the Ca2+ ATPase and as an ion channel.  相似文献   

10.
Tiburu EK  Karp ES  Dave PC  Damodaran K  Lorigan GA 《Biochemistry》2004,43(44):13899-13909
(2)H and (15)N solid-state NMR spectroscopic techniques were used to investigate the membrane composition, orientation, and side-chain dynamics of the transmembrane segment of phospholamban (TM-PLB), a sarcoplasmic Ca(2+)-regulator protein. (2)H NMR spectra of (2)H-labeled leucine (deuterated at one terminal methyl group) incorporated at different sites (CD(3)-Leu28, CD(3)-Leu39, and CD(3)-Leu51) along the TM-PLB peptide exhibited line shapes characteristic of either methyl group reorientation about the C(gamma)-C(delta) bond axis or by additional librational motion about the C(alpha)-C(beta) and C(beta)-C(gamma) bond axes. The (2)H NMR line shapes of all CD(3)-labeled leucines are very similar below 0 degrees C, indicating that all of the residues are located inside the lipid bilayer. At higher temperatures, all three labeled leucine residues undergo rapid reorientation about the C(alpha)-C(beta), C(beta)-C(gamma), and C(gamma)-C(delta) bond axes as indicated by (2)H line-shape simulations and reduced quadrupolar splittings. At all of the temperatures studied, the (2)H NMR spectra indicated that the Leu51 side chain has less motion than Leu39 or Leu28, which is attributed to its incorporation in the pentameric PLB leucine zipper motif. The (15)N powder spectra of Leu39 and Leu42 residues indicated no backbone motion, while Leu28 exhibited slight backbone motion. The chemical-shift anisotropy tensor values for (15)N-labeled Leu TM-PLB were sigma(11) = 50.5 ppm, sigma(22) = 80.5 ppm, and sigma(33) = 229 ppm within +/-3 ppm experimental error. The (15)N chemical-shift value from the mechanically aligned spectrum of (15)N-labeled Leu39 PLB in DOPC/DOPE phospholipid bilayers was 220 ppm and is characteristic of a TM peptide that is nearly parallel with the bilayer normal.  相似文献   

11.
Conserved residues in some of the transmembrane domains are proposed to mediate ion translocation by P-type pumps. The plasma membrane Ca(2+) pump (PMCA) lacks 2 of these residues in transmembrane domains (TM) 5 and 8. In particular, a glutamic acid (Glu-771) residue in TM5, which is proposed to be involved in the binding and transport of Ca(2+) by the sarcoplasmic reticulum Ca(2+) pump (SERCA), is replaced by an alanine (Ala-854) in the PMCA pump. Ala-854 has been mutated to Glu, Asp, or Gln; Glu-975 in TM8, which is an Ala in the SERCA pump, has been mutated to Gln, Asp, or Ala. The mutants have been expressed in three cell systems, with or without the help of viruses. When expressed in large amounts in Sf9 cells, the mutated pumps were isolated and analyzed in the purified state. Two of the three TM8 mutants were correctly delivered to the plasma membrane and were active. All the TM5 mutants were retained in the endoplasmic reticulum; two of them (A854Q and A854E) retained activity. Their properties (La(3+) sensitivity and decay of the phosphorylated intermediate, higher cooperativity of Ca(2+) binding with a Hill's coefficient approaching 2) differed from those of the expressed wild type PMCA pump, and resembled those of the SERCA pump.  相似文献   

12.
Phospholamban is a regulatory protein in cardiac sarcoplasmic reticulum that is phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. In this report, we present the partial amino acid sequence of canine cardiac phospholamban and the identification of the sites phosphorylated by these two protein kinases. Gas-phase protein sequencing was used to identify 20 NH2-terminal residues. Overlap peptides produced by trypsin or papain digestion extended the sequence 16 residues to give the following primary structure: Ser-Ala-Ile-Arg-Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-Ala- Arg-Gln-Asn-Leu-Gln-Asn-Leu-Phe-Ile-Asn-Phe-(Cys)-Leu-Ile-Leu-Ile-(Cys)- Leu-Leu-Leu-Ile-. Phospholamban phosphorylated by either cAMP-dependent or Ca2+/calmodulin-dependent protein kinase was cleaved with trypsin, and the major phosphorylated peptide (comprising greater than 70% of the incorporated 32P label) was purified by reverse-phase high performance liquid chromatography. The identical sequence was revealed for the radioactive peptide obtained from phospholamban phosphorylated by either kinase: Arg-Ala-Ser-Thr-Ile-Glu-Met-Pro-Gln-Gln-. The adjacent residues Ser7 and Thr8 of phospholamban were identified as the unique sites phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinases, respectively. These results establish that phospholamban is an oligomer of small, identical polypeptide chains. A hydrophilic, cytoplasmically oriented NH2-terminal domain on each monomer contains the unique, adjacent residues phosphorylated by cAMP- and Ca2+/calmodulin-dependent protein kinase activities. Analysis by hydropathic profiling and secondary structure prediction suggests that phospholamban monomers also contain a hydrophobic domain, which could form amphipathic helices sufficiently long to traverse the sarcoplasmic reticulum membrane. A model of phospholamban as a pentamer is presented in which the amphipathic alpha-helix of each monomer is a subunit of the pentameric membrane-anchored domain, which is comprised of an exterior hydrophobic surface and an interior hydrophilic region containing polar side chains.  相似文献   

13.
In an earlier study (Kimura, Y., Kurzydlowski, K., Tada, M., and MacLennan, D. H. (1997) J. Biol. Chem. 272, 15061-15064), mutation of amino acids on one face of the phospholamban (PLN) transmembrane helix led to loss of PLN inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) molecules. This helical face was proposed to form a site of PLN interaction with a transmembrane helix in SERCA molecules. To determine whether predicted transmembrane helices M4, M5, M6, or M8 in SERCA1a interact with PLN, SERCA1a mutants were co-expressed with wild-type PLN and effects on Ca(2+) dependence of Ca(2+) transport were measured. Wild-type inhibitory interactions shifted apparent Ca(2+) affinity of SERCA1a by an average of -0.34 pCa units, but four of the seven mutations in M4 led to a more inhibitory shift in apparent Ca(2+) affinity, averaging -0.53 pCa units. Seven mutations in M5 led to an average shift of -0.32 pCa units and seven mutations in M8 led to an average shift of -0.30 pCa units. Among 11 mutations in M6, 1, Q791A, increased the inhibitory shift (-0.59 pCa units) and 5, V795A (-0.11), L802A (-0.07), L802V (-0.04), T805A (-0.11), and F809A (-0.12), reduced the inhibitory shift, consistent with the view that Val(795), Leu(802), Thr(805), and Phe(809), located on one face of a predicted M6 helix, form a site in SERCA1a for interaction with PLN. Those mutations in M4, M6, or M8 of SERCA1a that enhanced PLN inhibitory function did not enhance PLN physical association with SERCA1a, but mutants V795A and L802A in M6, which decreased PLN inhibitory function, decreased physical association, as measured by co-immunoprecipitation. In related studies, those PLN mutants that gained inhibitory function also increased levels of co-immunoprecipitation of wild-type SERCA1a and those that lost inhibitory function also reduced association, correlating functional interaction sites with physical interaction sites. Thus, both functional and physical data confirm that PLN interacts with M6 SERCA1a.  相似文献   

14.
15.
Phospholamban is a regulator of the Ca(2+) affinity of the cardiac sarcoplasmic reticulum Ca(2+) ATPase (SERCA2a) and of cardiac contractility. In vitro expression studies have shown that several mutant phospholamban monomers are superinhibitory, suggesting that monomeric phospholamban is the active species. However, a phospholamban Asn(27) --> Ala (N27A) mutant, which maintained a normal pentamer to monomer ratio, was shown to act as a superinhibitor of SERCA2a Ca(2+) affinity. To determine whether the pentameric N27A mutant is superinhibitory in vivo, transgenic mice with cardiac-specific overexpression of mutant phospholamban were generated. Quantitative immunoblotting revealed a 61 +/- 6% increase in total phospholamban in mutant hearts, with 90% of the overexpressed protein being pentameric. The EC(50) value for Ca(2+) dependence of Ca(2+) uptake was 0.69 +/- 0.07 microM in mutant hearts, compared with 0.29 +/- 0.02 microM in wild-type hearts or 0. 43 +/- 0.03 microM in hearts overexpressing wild-type PLB by 2-fold. Myocytes from phospholamban N27A mutant hearts also exhibited more depressed contractile parameters than wild-type phospholamban overexpressing cells. The shortening fraction was 52%, rates of shortening and relengthening were 46% and 38% respectively, and time for 80% decay of the Ca(2+) signal was 146%, compared with wild-types (100%). Langendorff-perfused mutant hearts also demonstrated depressed contractile parameters. Furthermore, in vivo echocardiography showed a depression in the ratio of early to late diastolic transmitral velocity and a 79% prolongation of the isovolumic relaxation time. Isoproterenol stimulation did not fully relieve the depressed contractile parameters at the cellular, organ, and intact animal levels. Thus, pentameric phospholamban N27A mutant can act as a superinhibitor of the affinity of SERCA2a for Ca(2+) and of cardiac contractility in vivo.  相似文献   

16.
The regulation of Ca(2+)-pumps is important for controlling [Ca(2+)] in the cytosol and organelles of all eukaryotes. Here, we report a genetic strategy to identify residues that function in autoinhibition of a novel calmodulin-activated Ca(2+)-pump with an N-terminal regulatory domain (isoform ACA2 from Arabidopsis). Mutant pumps with constitutive activity were identified by complementation of a yeast (K616) deficient in two Ca(2+)-pumps. Fifteen mutations were found that disrupted a segment of the N-terminal autoinhibitor located between Lys(23) and Arg(54). Three mutations (E167K, D219N, and E341K) were found associated with the stalk that connects the ATPase catalytic domain (head) and with the transmembrane domain. Enzyme assays indicated that the stalk mutations resulted in calmodulin-independent activity, with V(max), K(mATP), and K(mCa(2+)) similar to that of a pump in which the N-terminal autoinhibitor had been deleted. A highly conservative substitution at Asp(219) (D219E) still produced a deregulated pump, indicating that the autoinhibitory structure in the stalk is highly sensitive to perturbation. In plasma membrane H(+)-ATPases from yeast and plants, similarly positioned mutations resulted in hyperactive pumps. Together, these results suggest that a structural feature of the stalk is of general importance in regulating diverse P-type ATPases.  相似文献   

17.
Sixteen residues in stalk segment S5 of the Ca(2+)-ATPase of sarcoplasmic reticulum were studied by site-directed mutagenesis. The rate of the Ca(2+) binding transition, determined at 0 degrees C, was enhanced relative to wild type in mutants Ile(743) --> Ala, Val(747) --> Ala, Glu(748) --> Ala, Glu(749) --> Ala, Met(757) --> Gly, and Gln(759) --> Ala and reduced in mutants Asp(737) --> Ala, Asp(738) --> Ala, Ala(752) --> Leu, and Tyr(754) --> Ala. In mutant Arg(762) --> Ile, the rate of the Ca(2+) binding transition was wild type like at 0 degrees C, whereas it was 3.5-fold reduced relative to wild type at 25 degrees C. The rate of dephosphorylation of the ADP-insensitive phosphoenzyme was increased conspicuously in mutants Ile(743) --> Ala and Tyr(754) --> Ala (close to 20-fold in the absence of K(+)) and increased to a lesser extent in Asn(739) --> Ala, Glu(749) --> Ala, Gly(750) --> Ala, Ala(752) --> Gly, Met(757) --> Gly, and Arg(762) --> Ile, whereas it was reduced in mutants Asp(737) --> Ala, Val(744) --> Gly, Val(744) --> Ala, Val(747) --> Ala, and Ala(752) --> Leu. In mutants Ile(743) --> Ala, Tyr(754) --> Ala, and Arg(762) --> Ile, the apparent affinities for vanadate were enhanced 23-, 30-, and 18-fold, respectively, relative to wild type. The rate of Ca(2+) dissociation was 11-fold increased in Gly(750) --> Ala and 2-fold reduced in Val(747) --> Ala. Mutants with alterations to Arg(751) either were not expressed at a significant level or were completely nonfunctional. The findings show that S5 plays a crucial role in mediating communication between the Ca(2+) binding pocket and the catalytic domain and that Arg(751) is important for both structural and functional integrity of the enzyme.  相似文献   

18.
Tikunova SB  Rall JA  Davis JP 《Biochemistry》2002,41(21):6697-6705
Troponin C (TnC) is an EF-hand Ca(2+) binding protein that regulates skeletal muscle contraction. The mechanisms that control the Ca(2+) binding properties of TnC and other EF-hand proteins are not completely understood. We individually substituted 27 Phe, Ile, Leu, Val, and Met residues with polar Gln to examine the role of hydrophobic residues in Ca(2+) binding and exchange with the N-domain of a fluorescent TnC(F29W). The global N-terminal Ca(2+) affinities of the TnC(F29W) mutants varied approximately 2340-fold, while Ca(2+) association and dissociation rates varied less than 70-fold and more than 45-fold, respectively. Greater than 2-fold increases in Ca(2+) affinities were obtained primarily by slowing of Ca(2+) dissociation rates, while greater than 2-fold decreases in Ca(2+) affinities were obtained by slowing of Ca(2+) association rates and speeding of Ca(2+) dissociation rates. No correlation was found between the Ca(2+) binding properties of the TnC(F29W) mutants and the solvent accessibility of the hydrophobic amino acids in the apo state, Ca(2+) bound state, or the difference between the two states. However, the effects of these hydrophobic mutations on Ca(2+) binding were contextual possibly because of side chain interactions within the apo and Ca(2+) bound states of the N-domain. These results demonstrate that a single hydrophobic residue, which does not directly ligate Ca(2+), can play a crucial role in controlling Ca(2+) binding and exchange within a coupled and functional EF-hand system.  相似文献   

19.
Phospholamban is the regulator of the Ca(2+)-ATPase in cardiac sarcoplasmic reticulum (SR). The mechanism of regulation appears to involve inhibition by dephosphorylated phospholamban, and phosphorylation may relieve this inhibition. Fast-twitch skeletal muscle SR does not contain phospholamban, and it is not known whether the Ca(2+)-ATPase isoform from this muscle may be also subject to regulation by phospholamban in a similar manner as the cardiac isoform. To determine this we reconstituted the skeletal isoform of the SR Ca(2+)-ATPase with phospholamban in phosphatidylcholine proteoliposomes. Inclusion of phospholamban was associated with significant inhibition of the initial rates of Ca2+ uptake at pCa 6.0, and phosphorylation of phospholamban by the catalytic subunit of cAMP-dependent protein kinase reversed the inhibitory effects on the Ca2+ pump. Similar effects of phospholamban were also observed using phosphatidylcholine:phosphatidylserine proteoliposomes, in which the Ca2+ pump was activated by the negatively charged phospholipids (24). Regulation of the Ca(2+)-ATPase appeared to involve binding with the hydrophilic portion of phospholamban, as evidenced by cross-linking experiments, using a synthetic peptide that corresponded to amino acids 1-25 of phospholamban. These findings suggest that the fast-twitch isoform of the SR Ca(2+)-ATPase may be also regulated by phospholamban, although this regulator is not expressed in fast-twitch skeletal muscles.  相似文献   

20.
Reconstitution into proteoliposomes is a powerful method for studying calcium transport in a chemically pure membrane environment. By use of this approach, we have studied the regulation of Ca(2+)-ATPase by phospholamban (PLB) as a function of calcium concentration and PLB mutation. Co-reconstitution of PLB and Ca(2+)-ATPase revealed the expected effects of PLB on the apparent calcium affinity of Ca(2+)-ATPase (K(Ca)) and unexpected effects of PLB on maximal activity (V(max)). Wild-type PLB, six loss-of-function mutants (L7A, R9E, I12A, N34A, I38A, L42A), and three gain-of-function mutants (N27A, L37A, and I40A) were evaluated for their effects on K(Ca) and V(max). With the loss-of-function mutants, their ability to shift K(Ca) correlated with their ability to increase V(max). A total loss-of-function mutant, N34A, had no effect on K(Ca) of the calcium pump and produced only a marginal increase in V(max). A near-wild-type mutant, I12A, significantly altered both K(Ca) and V(max) of the calcium pump. With the gain-of-function mutants, their ability to shift K(Ca) did not correlate with their ability to increase V(max). The "super-shifting" mutants N27A, L37A, and I40A produced a large shift in K(Ca) of the calcium pump; however, L37A decreased V(max), while N27A and I40A increased V(max). For wild-type PLB, phosphorylation completely reversed the effect on K(Ca), but had no effect on V(max). We conclude that PLB increases V(max) of Ca(2+)-ATPase, and that the magnitude of this effect is sensitive to mutation. The mutation sensitivity of PLB Asn(34) and Leu(37) identifies a region of the protein that is responsible for this regulatory property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号