首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
We have shown the differential interactions of the erythroid skeletal protein spectrin with the globin subunits of adult haemoglobin (HbA); these indicate a preference for alpha-globin over that for beta-globin and intact HbA in an adenosine 5'-triphosphate (ATP)-dependent manner. The presence of Mg/ATP led to an appreciable decrease in the binding affinity of the alpha-globin chain to spectrin and the overall yield of globin-spectrin cross-linked complexes formed in the presence of hydrogen peroxide. Similar effects were also seen in the presence of 2-,3-diphosphoglycerate (2,3 DPG), the other important phosphate metabolite of erythrocytes. The binding affinity and yield of cross-linked high molecular weight complexes (HMWCs) formed under oxidative conditions were significantly higher in alpha-globin compared with intact haemoglobin, HbA and the beta-globin chain. The results of this study indicate a possible correlation of the preferential spectrin binding of the alpha-globin chain over that of the beta-globin in the haemoglobin disorder beta-thalassaemia.  相似文献   

2.
Six new natural compounds were isolated from two Far Eastern starfish species, Henricia aspera and H. tumida, collected in the Sea of Okhotsk. Two new glycosylated steroid polyols were obtained from H. aspera: asperoside A and asperoside B, which were shown to be (20R,24R, 25S)-3-O-(2,3-di-O-methyl-β -D-xylopyranosyl)-24-methyl-5α-cholest-4-ene-3β, 6β,8,15α,16β,26-hexaol and (20R, 24R,25S,22E)-3-O-(2,4-di-O-methyl-β-D-xylopyranosyl)-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,26-hexaol, respectively. Two other glycosylated polyols, tumidoside A, with the structure elucidated as (20R, 22E)-3-O-(2,4-di-O-methyl-β -D-xylopyranosyl)-26,27-dinor-24-methyl-5α-cholest-22-ene-3β,4β,6β,8,15α,25-hexaol, and tumidoside B, whose structure was elucidated as (20R,24S)-3-O-(2,3-di-O-methyl-β-D-xylopyranosyl)-5α-cholestan-3β,4β,6β,8,15α,24-hexaol, were isolated from the two starfish species. (20R, 24S)-5α-Cholestan-3β,6β,15α,24-tetraol and (20R, 24S)-5α-cholestan-3β,6β,8,15α,24-pentaol were identified only in H. tumida. The known monoglycosides henricioside H1 and laeviuscolosides H and G were also identified in both species.  相似文献   

3.
Macro domains are conserved protein domains found in eukaryotic organisms, bacteria, and archaea as well as in certain viruses. They consist of 130–190 amino acids and can bind ADP-ribose. Although the exact role of these domains is not fully understood, the conserved binding affinity for ADP-ribose indicates that this ligand is important for the function of the domain. Such a macro domain is also present in the non-structural protein 3 (nsP3) of Chikungunya Alphavirus (CHIKV) and consists of 160 amino acids. In this study we describe the high yield expression of the macro domain from CHIKV and its preliminary structural analysis via solution NMR spectroscopy. The macro domain seems to be folded in solution and an almost complete backbone assignment was achieved. In addition, the α/β/α sandwich topology with 4 α-helices and 6 β-strands was predicted by TALOS+.  相似文献   

4.
Three new steroid glycosides (evasteriosides C, D, and E) along with six known compounds were isolated from two Pacific starfish of the genus Evasterias. Evasterioside C from E. retiferacollected from the Sea of Japan was identified as (20R, 22E)-3-O-(β-D-xylopyranosyl)-24-nor-5α-cholest-22-ene-3β,6β,15α,26-pentaol 26-sulfate sodium salt. The structures of evasteriosides D and E from E. echinosoma (collected from the Gulf of Shelichov, the Sea of Okhotsk) were established as (20R, 24S)-24-O-(β-D-glucopyranosyl)-5α-cholestane-3β,6α,8,15β,24-pentaol and (20R,24S)-3,24-di-O-(β-D-xylopyranosyl)-cholest-4-ene-3β,6β,8,15α,24-pentaol, respectively. In addition, the known compounds pycnopodiosides A and C, luridoside A, 5α-cholestane-3β,6α,8,15β,16β,26-hexaol. 5α-Cholestane-3β,6α,8,15β,24-pentaol 24-sulfate sodium saltand marthasterone sulfate sodium salt were identified in E. echinosoma. The structures of the isolated compounds were established on the basis of spectroscopic analyses, using 1D and 2D NMR techniques, mass spectrometry, and some chemical transformations.  相似文献   

5.
Two new steroid glycosides were isolated from the Far East starfish Hippasteria kurilensis collected in the Sea of Okhotsk. They were characterized as (22E,24R)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-[2-O-methyl-β-D-xylopyranosyl-(1→5)-α-L-arabinofuranosyl]-5α-cholest-22-ene-3β,4β,6α,7α,8,15β,24-heptaol (kurilensoside I) and (24S)-3-O-(2-O-methyl-β-D-xylopyranosyl)-24-O-(α-L-arabinofuranosyl)-5α-cholestane-3β,4β,6β,15α,24-pentaol (kurilensoside J). In addition, the earlier known glycosides linkosides F and L1, leviusculoside G, forbeside L, desulfated echinasteroside, and granulatoside A were isolated and identified. The structures of the new compounds were established with the help of two-dimentional NMR spectroscopy and mass- spectrometry.  相似文献   

6.
Two new steroid glycosides: distolasteroside D6, (24S)-24-O-(β-D-xylopyranosyl)-5α-cholestane-3β,6α,8,15β,16β,24-hexaol, and distolasteroside D7, (22E,24R)-24-O-(β-D-xylopyranosyl)-5α-cholest-22-ene-3β,6α,8,15β,24-pentaol were isolated along with the previously known distolasterosides D1, D2, and D3, echinasteroside C, and (25S)-5α-cholestane-3β4β,6α,7α,8,15α,16β,26-octaol from the Far Eastern starfish Distolasterias nipon. The structures of new compounds were elucidated by NMR spectroscopy and MALDI TOF mass spectrometry. Like neurotrophins, distolasterosides D1, D2, and D3 were shown to induce neuroblast differentiation in a mouse neuroblastoma C1300 cell culture.  相似文献   

7.
Human amniotic membrane (HAM) due to its high biocompatibility, low immunogenicity, anti-microbial, anti-viral properties as well as the presence of growth factors has been used in various clinical applications. The growth factors play an important role in wound healing. The current study aimed to explore the effect of 15 kGy gamma radiation dose on selected growth factors and receptors mRNA present in HAM. Eight growth factors, namely, EGF, HGF, KGF, TGF-α, TGF-β1, TGF-β2, TGF-β3 and bFGF and two growth factor receptors, HGFR and KGFR were evaluated in this study. The total RNA was extracted and converted to complimentary DNA using commercial kits. Subsequently, the mRNA expressions of these growth factors were evaluated using real-time PCR and the results were statistically analyzed using REST-MCS software. This study confirmed the presence of these mRNA growth factors and receptors in fresh, glycerol cryopreserved and irradiated glycerol cryopreserved HAM. In glycerol cryopreserved HAM, the results showed up-regulation of HGF and bFGF and down-regulation of EGF, HGFR, KGF, KGFR, TGF-α, TGF-β1, TGF-β2 and TGF-β3 relative to the fresh HAM which acted as the control, whereas in irradiated glycerol cryopreserved HAM, the results showed up-regulation of EGF, HGF, KGF, KGFR, TGF-β1, TGF-β2 and TGF-β3 and down-regulation of HGFR, TGF-α and bFGF relative to the glycerol cryopreserved HAM which acted as the control. However, these mRNA expressions did not show any statistical significant difference compared to the control groups. This study concluded that a dose of 15 kGy of gamma radiation did not affect the mRNA expression for the growth factors’ and receptors’ in the glycerol cryopreserved HAM.  相似文献   

8.
The chemical synthesis of (22R,23R)-3β-hydroxy-22,23-epoxy-5α-ergost-8(14)-en-15-one from (22A)-3β-acetoxy-5α-ergosta-7,14,22-triene was improved. The stages of obtaining and isomerization of (22A)-3β-acetoxy-14α15α-epoxy-5α-ergosta-7,22-diene were optimized. The introduction of (22R,23R)-epoxide cycle was carried out by alkaline treatment of intermediate (22S,23R)-3β,23-diacetoxy-22-iodo-5α-ergost-8(14)-en-15-one. In cells of human breast carcinoma MCF-7, (22R,23R)-3β-hydroxy-22,23-epoxy-5α-ergost-8(14)-en-15-one showed a high toxicity (TC50 = 0.4±0.1 μM at 48-h incubation in serum-free medium).  相似文献   

9.
Real-time quantitative polymerase chain reaction (RT-qPCR) is an effective method for detecting changes of gene expression in plant cell metabolic regulation. A set of 15 reference gene candidates were selected for the present study of anthocyanin biosynthesis regulation, and stability. The suitability of their expression was evaluated in eight different experimental treatments in spine grape (Vitis davidii [Rom. Caill.] Foëx.) cell cultures. The results indicated that SAND family protein (SAND) and V-type proton ATPase subunit G (VAG) were the most stable reference genes for culture duration, tubulin alpha-3/alpha-5 chain (α-tubulin) and tubulin beta-1 chain (β-tubulin) for illumination conditions, ubiquitin-conjugating enzyme E2-17 kDa (UBQ) and VAG for UVB treatment, VAG and 60S ribosomal protein L18-2 (60SRP) for temperature treatment, AP47, clathrin adaptor complex subunit mu (AP-2) and 60SRP for cinnamic acid treatment, α-tubulin and UBQ for chitosan treatment, actin and alcohol dehydrogenase 2 (ADH2) for kinetin treatment, and β-tubulin and elongation factor 1-α (EF1-α) for cell line. Finally, the reliability of the selected reference genes was confirmed by investigating the expression profiles of the target gene dihydroflavonol 4-reductase (DFR) in spine grape cell cultures. The results of the present study offer the most robust platform for the most precise and broad application of RT-qPCR to investigate gene expression associated with anthocyanin biosynthesis in spine grape cell cultures.  相似文献   

10.
Seven sulfated polyhydroxysteroids were isolated from the Far East starfish Pteraster obscurus and the ophiura (snake star) Asteronyx loveni (collected in the Sea of Okhotsk) and characterized: disodium and sodium salts of (20R)-24-methyl-2β-hydroxycholesta-5,24(28)-diene-3α,21-diyl disulfate, (20R)-5α-cholestane-3β,21-diyl disulfate, (20R)-3β-hydroxy-5α-cholestan-21-yl sulfate, (20R)-cholest-5-ene-3β,21-diyl disulfate, (20R)-2β-hydroxycholest-5-ene-3α,21-diyl disulfate, (20R)-cholest-5-en-3β-yl sulfate, and (20R)-5α-cholestan-3β-yl sulfate. The first four compounds turned out to be new, whereas the others were identical to the known compounds. Structures of the isolated steroids were identified by two-dimensional NMR spectroscopy and other physicochemical methods. The compounds isolated from starfish are structurally similar to typical ophiuroid metabolites, which support the opinion of some taxonomists that starfish and ophiuroids are phylogenetically related classes.  相似文献   

11.
Staphylococcus aureus: hibernation-promoting factor (SaHPF) is a 22.2 kDa stationary-phase protein that binds to the ribosome and turns it to the inactive form favoring survival under stress. Sequence analysis has shown that this protein is combination of two homolog proteins obtained in Escherichia coli—ribosome hibernation promoting factor (HPF) (11,000 Da) and ribosome modulation factor RMF (6500 Da). Binding site of E. coli HPF on the ribosome have been shown by X-ray study of Thermus thermophilus ribosome complex. Hence, recent studies reported that the interface is markedly different between 100S from S. aureus and E. coli. Cryo-electron microscopy structure of 100S S. aureus ribosomes reveal that the SaHPF-NTD binds to the 30S subunit as observed for shorter variants of HPF in other species and the C-terminal domain (CTD) protrudes out of each ribosome in order to mediate dimerization. SaHPF-NTD binds to the small subunit similarly to its homologs EcHPF, EcYfiA, and a plastid-specific YfiA. Furthermore, upon binding to the small subunit, the SaHPF-NTD occludes several antibiotic binding sites at the A site (hygromycin B, tetracycline), P site (edeine) and E site (pactamycin, kasugamycin). In order to elucidate the structure, dynamics and function of SaHPF-NTD from S. aureus, here we report the backbone and side chain resonance assignments for SaHPF-NTD. Analysis of the backbone chemical shifts by TALOS+ suggests that SaHPF-NTD contains two α-helices and four β-strands (β1-α1-β2-β3-β4-α2 topology). Investigating the long-term survival of S. aureus and other bacteria under antibiotic pressure could lead to advances in antibiotherapy.  相似文献   

12.
Epothilone A is a derivative of 16-membered polyketide natural product, which has comparable chemotherapeutic effect like taxol. Introduction of sialic acids to these chemotherapeutic agents could generate interesting therapeutic glycoconjugates with significant effects in clinical studies. Since, most of the organisms biosynthesize sialic acids in their cell surface, they are key mediators in cellular events (cell-cell recognition, cell-matrix interactions). Interaction between such therapeutic sugar parts and cellular polysaccharides could generate interesting result in drugs like epothilone A. Based on this hypothesis, epothilone A glucoside (epothilone A 6-O-β-D-glucoside) was further decorated by conjugating enzymatically galactose followed by sialic acids to generate epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactoside i.e., lactosyl epothilone A (lac epoA) and two sialosides of epothilone A namely epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 3″-O-α-N-acetyl neuraminic acid and epothilone A 7-O-β-D-glucopyranosyl, 4′-O-α-D-galactopyranosyl 6″-O-α-N-acetylneuraminic acid i.e., 3′sialyllactosyl epothilone A: 3′SL-epoA, and 6′sialyllactosyl epothilone A: 6′SL-epoA, respectively. These synthesized analogs were spectroscopically analyzed and elucidated, and biologically validated using HUVEC and HCT116 cancer cell lines.  相似文献   

13.
14.
15.
Three new polar steroids identified as trofoside A, 20R,24S)-24-O-(3-O-methyl-β-D-xylopyranosyl)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane, its 22(23)-dehydro derivative (trofoside B), and 15-sulfooxy-(20R,24S)-5α-cholestane-3β,6β,8,15α,24-pentaol sodium salt, were isolated fromTrofodiscus über starfish extracts collected in the Sea of Ohotsk. Two known compounds, trofoside A aglycone, (20R,24S)-3β,6α,8,15β,24-pentahydroxy-5α-cholestane, and triseramide, (20R,24R,25S,22E)-24-methyl-3β6α,8,15β-tetrahydroxy-5α-cholest-22-en-27-oic acid (2-sulfoethyl)amide sodium salt, were also found. The structures of the isolated polyoxysteroids were established from their spectra. Minimal concentrations causing degradation of unfertilized egg-cells of the sea-urchin Strongylocentrotus intermedius(C min) and terminating the cell division at the stage of the first division (C min embr.), as well as the concentrations causing 50% immobilization of sperm cells (OC50) and inhibiting their ability to fertilize egg-cells by 50% (IC50) were determined for the isolated compounds. Of three compounds highly toxic in embryos and sea-urchin sperm cells, the polyol with a sulfo group in the steroid core was the most active; two glycosides with monosaccharide chains located at C3 and C24 atoms were less toxic. Note that all the compounds with the spermiotoxic activities differently affected the embryo development. The positions of monosaccharide residues in the core considerably influence the compound activity. For example, both mono-and double chained glycosides with the monosaccharide fragment at C3 and fragments at C3 and C4 atoms are active against sea-urchin sperm cells and embryos, whereas the C24 glycosylated trofoside A does not affect embryos and displays a poor spermiotoxicity.  相似文献   

16.
Oral bacteria initiate biofilm formation by attaching to tooth surfaces via an interaction of a lectin-like bacterial protein with carbohydrate chains on the pellicle. This study aimed to find naturally derived lectins that inhibit the initial attachment of a cariogenic bacterial species, Streptococcus mutans (S. mutans), to carbohydrate chains in saliva in vitro. Seventy kinds of lectins were screened for candidate motifs that inhibit the attachment of S. mutans ATCC 25175 to a saliva-coated culture plate. The inhibitory effect of the lectins on attachment of the S. mutans to the plates was quantified by crystal violet staining, and the biofilm was observed under a scanning electron microscope (SEM). Surface plasmon resonance (SPR) analysis was performed to examine the binding of S. mutans to carbohydrate chains and the binding of candidate lectins to carbohydrate chains, respectively. Moreover, binding assay between the biotinylated-lectins and the saliva components was conducted to measure the lectin binding. Lectins recognizing a salivary carbohydrate chain, Galβ1-3GalNAc, inhibited the binding of S. mutans to the plate. In particular, Agaricus bisporus agglutinin (ABA) markedly inhibited the binding. This inhibition was confirmed by SEM observation. SPR analysis indicated that S. mutans strongly binds to Galβ1-3GalNAc, and ABA binds to Galβ1-3GalNAc. Finally, the biotinylated Galβ1-3GalNAc-binding lectins including ABA demonstrated marked binding to the saliva components. These results suggest that ABA lectin inhibited the attachment of S. mutans to Galβ1-3GalNAc in saliva and ABA can be useful as a potent inhibitor for initial attachment of oral bacteria and biofilm formation.  相似文献   

17.
The structure of the O-specific polysaccharide from Shigella dysenteriae type 10, which has been reported previously in Bioorganic chemistry (1977, vol.3, pp. 1219–1225), is refined: →2)-β-D-Manp-(1→3)-α-D-ManpNAc-(1→3)-β-L-Rhap-(1→4)-α-D-GlcpNAc-(1→.  相似文献   

18.
The first crystal structure of a pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH) from a marine methylotrophic bacterium, Methylophaga aminisulfidivorans MPT (MDHMas), was determined at 1.7 Å resolution. The active form of MDHMas (or MDHIMas) is a heterotetrameric α2β2, where each β-subunit assembles on one side of each of the α-subunits, in a symmetrical fashion, so that two β-subunits surround the two PQQ-binding pockets on the α-subunits. The active site consists of a PQQ molecule surrounded by a β-propeller fold for each α-subunit. Interestingly, the PQQ molecules are coordinated by a Mg2+ ion, instead of the Ca2+ ion that is commonly found in the terrestrial MDHI, indicating the efficiency of osmotic balance regulation in the high salt environment. The overall interaction of the β-subunits with the α-subunits appears tighter than that of terrestrial homologues, suggesting the efficient maintenance of MDHIMas integrity in the sea water environment to provide a firm basis for complex formation with MxaJMas or Cyt cL. With the help of the features mentioned above, our research may enable the elucidation of the full molecular mechanism of methanol oxidation by taking advantage of marine bacterium-originated proteins in the methanol oxidizing system (mox), including MxaJ, as the attainment of these proteins from terrestrial bacteria for structural studies has not been successful.  相似文献   

19.
Molecular complexes of triterpene glycosides such as α-hederin (hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranoside) and hederasaponin C (hederagenin 3-O-α-L-rhamnopyranosyl-(1 → 2)-O-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosyl-(1 → 4)-O-β-D-glucopyranosyl-(1 → 6)-O-β-D-glucopyranoside) with β-cyclodextrin were synthesized. The complex formation was studied by FTIR spectroscopy. Toxic properties of the molecular complexes were examined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号