首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The classical approaches for protein structure prediction rely either on homology of the protein sequence with a template structure or on ab initio calculations for energy minimization. These methods suffer from disadvantages such as the lack of availability of homologous template structures or intractably large conformational search space, respectively. The recently proposed fragment library based approaches first predict the local structures,which can be used in conjunction with the classical approaches of protein structure prediction. The accuracy of the predictions is dependent on the quality of the fragment library. In this work, we have constructed a library of local conformation classes purely based on geometric similarity. The local conformations are represented using Geometric Invariants, properties that remain unchanged under transformations such as translation and rotation, followed by dimension reduction via principal component analysis. The local conformations are then modeled as a mixture of Gaussian probability distribution functions (PDF). Each one of the Gaussian PDF's corresponds to a conformational class with the centroid representing the average structure of that class. We find 46 classes when we use an octapeptide as a unit of local conformation. The protein 3-D structure can now be described as a sequence of local conformational classes. Further, it was of interest to see whether the local conformations can be predicted from the amino acid sequences. To that end,we have analyzed the correlation between sequence features and the conformational classes.  相似文献   

2.
3.

Background

Elucidating the native structure of a protein molecule from its sequence of amino acids, a problem known as de novo structure prediction, is a long standing challenge in computational structural biology. Difficulties in silico arise due to the high dimensionality of the protein conformational space and the ruggedness of the associated energy surface. The issue of multiple minima is a particularly troublesome hallmark of energy surfaces probed with current energy functions. In contrast to the true energy surface, these surfaces are weakly-funneled and rich in comparably deep minima populated by non-native structures. For this reason, many algorithms seek to be inclusive and obtain a broad view of the low-energy regions through an ensemble of low-energy (decoy) conformations. Conformational diversity in this ensemble is key to increasing the likelihood that the native structure has been captured.

Methods

We propose an evolutionary search approach to address the multiple-minima problem in decoy sampling for de novo structure prediction. Two population-based evolutionary search algorithms are presented that follow the basic approach of treating conformations as individuals in an evolving population. Coarse graining and molecular fragment replacement are used to efficiently obtain protein-like child conformations from parents. Potential energy is used both to bias parent selection and determine which subset of parents and children will be retained in the evolving population. The effect on the decoy ensemble of sampling minima directly is measured by additionally mapping a conformation to its nearest local minimum before considering it for retainment. The resulting memetic algorithm thus evolves not just a population of conformations but a population of local minima.

Results and conclusions

Results show that both algorithms are effective in terms of sampling conformations in proximity of the known native structure. The additional minimization is shown to be key to enhancing sampling capability and obtaining a diverse ensemble of decoy conformations, circumventing premature convergence to sub-optimal regions in the conformational space, and approaching the native structure with proximity that is comparable to state-of-the-art decoy sampling methods. The results are shown to be robust and valid when using two representative state-of-the-art coarse-grained energy functions.
  相似文献   

4.
The goal of this work is to characterize structurally ambivalent fragments in proteins. We have searched the Protein Data Bank and identified all structurally ambivalent peptides (SAPs) of length five or greater that exist in two different backbone conformations. The SAPs were classified in five distinct categories based on their structure. We propose a novel index that provides a quantitative measure of conformational variability of a sequence fragment. It measures the context-dependent width of the distribution of (phi,xi) dihedral angles associated with each amino acid type. This index was used to analyze the local structural propensity of both SAPs and the sequence fragments contiguous to them. We also analyzed type-specific amino acid composition, solvent accessibility, and overall structural properties of SAPs and their sequence context. We show that each type of SAP has an unusual, type-specific amino acid composition and, as a result, simultaneous intrinsic preferences for two distinct types of backbone conformation. All types of SAPs have lower sequence complexity than average. Fragments that adopt helical conformation in one protein and sheet conformation in another have the lowest sequence complexity and are sampled from a relatively limited repertoire of possible residue combinations. A statistically significant difference between two distinct conformations of the same SAP is observed not only in the overall structural properties of proteins harboring the SAP but also in the properties of its flanking regions and in the pattern of solvent accessibility. These results have implications for protein design and structure prediction.  相似文献   

5.
6.
7.
Lee J  Lee J  Sasaki TN  Sasai M  Seok C  Lee J 《Proteins》2011,79(8):2403-2417
Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods.  相似文献   

8.
Over the last few years we have developed an empirical potential function that solves the protein structure recognition problem: given the sequence for an n-residue globular protein and a collection of plausible protein conformations, including the native conformation for that sequence, identify the correct, native conformation. Having determined this potential on the basis of only some 6500 native/nonnative pairs of structures for 58 proteins, we find it recognizes the native conformation for essentially all compact, soluble, globular proteins having known native conformations in comparisons with 104 to 106 reasonable alternative conformations apiece. In this sense, the potential encodes nearly all the essential features of globular protein conformational preference. In addition it “knows” about many additional factors in protein folding, such as the stabilization of multimeric proteins, quaternary structure, the role of disulfide bridges and ligands, proproteins vs. processed proteins, and minimal strand lengths in globular proteins. Comparisons are made with other sorts of protein folding problems, and applications in protein conformational determination and prediction are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Relations between protein sequence and structure and their significance   总被引:1,自引:0,他引:1  
The relation between amino acid sequence and local structure in proteins is investigated. The local structures considered are either the four classes of secondary structure (H, E, T and C) or four classes of local conformations defined using measures of conformational similarity based on distances between C alpha atoms. The classes are obtained by applying an automatic clustering procedure to short polypeptide fragments of uniform length from a database of 75 known protein structures. The thrust of our investigation consists of systematically searching the database for simple amino acid patterns of the type Gly-X-Ala-X-X-Val, where X denotes an arbitrary residue. Patterns that are nearly always associated with the same structure are retained. Finding many such associations, we then evaluate by a statistical approach how many among them are non-random and compare the results for different definitions of local structure. A similar comparison is made for the predictive value of retained associations, which is assessed using an internal test based on dividing the database into "learning" and "test" subsets. While we find that local structures defined by conformational similarity are not superior to secondary structure for prediction purposes, they help us gain insight into the factors that influence the predictive value of derived associations. A major conclusion is that the number of retained associations is in large excess over the number expected from a random correlation between sequence and structure, irrespective of how local conformation is defined. However, only a very small number of these associations can be earmarked as reliable using statistical criteria, due to the limited size of the database. We find, for instance, that the pattern Ala-Ala-X-X-Lys reliably characterizes helix, and the pattern Val-X-Val-X-X-X-Ala reliably characterizes extended structure and beta-strand. The possibility is discussed that these and other reliable associations correspond to regions of the polypeptide chain whose conformations are locally determined and that these regions may play a role in folding.  相似文献   

10.
Energy functions, fragment libraries, and search methods constitute three key components of fragment‐assembly methods for protein structure prediction, which are all crucial for their ability to generate high‐accuracy predictions. All of these components are tightly coupled; efficient searching becomes more important as the quality of fragment libraries decreases. Given these relationships, there is currently a poor understanding of the strengths and weaknesses of the sampling approaches currently used in fragment‐assembly techniques. Here, we determine how the performance of search techniques can be assessed in a meaningful manner, given the above problems. We describe a set of techniques that aim to reduce the impact of the energy function, and assess exploration in view of the search space defined by a given fragment library. We illustrate our approach using Rosetta and EdaFold, and show how certain features of these methods encourage or limit conformational exploration. We demonstrate that individual trajectories of Rosetta are susceptible to local minima in the energy landscape, and that this can be linked to non‐uniform sampling across the protein chain. We show that EdaFold's novel approach can help balance broad exploration with locating good low‐energy conformations. This occurs through two mechanisms which cannot be readily differentiated using standard performance measures: exclusion of false minima, followed by an increasingly focused search in low‐energy regions of conformational space. Measures such as ours can be helpful in characterizing new fragment‐based methods in terms of the quality of conformational exploration realized. Proteins 2016; 84:411–426. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.  相似文献   

11.
Lee J  Kim SY  Joo K  Kim I  Lee J 《Proteins》2004,56(4):704-714
A novel method for ab initio prediction of protein tertiary structures, PROFESY (PROFile Enumerating SYstem), is proposed. This method utilizes the secondary structure prediction information of a query sequence and the fragment assembly procedure based on global optimization. Fifteen-residue-long fragment libraries are constructed using the secondary structure prediction method PREDICT, and fragments in these libraries are assembled to generate full-length chains of a query protein. Tertiary structures of 50 to 100 conformations are obtained by minimizing an energy function for proteins, using the conformational space annealing method that enables one to sample diverse low-lying local minima of the energy. We apply PROFESY for benchmark tests to proteins with known structures to demonstrate its feasibility. In addition, we participated in CASP5 and applied PROFESY to four new-fold targets for blind prediction. The results are quite promising, despite the fact that PROFESY was in its early stages of development. In particular, PROFESY successfully provided us the best model-one structure for the target T0161.  相似文献   

12.
Three-way junctions (3H) are the simplest and most commonly occurring branched nucleic acids. They consist of three double helical arms (A to C), connected at the junction point, with or without a number of unpaired bases in one or more of the three different strands. Three-way junctions with two unpaired bases in one strand (3HS2) have a high tendency to adopt either of two alternative stacked conformations in which two of the three arms A, B and C are coaxially stacked, i.e. A/B-stacked or A/C-stacked. Empirical stacking rules, which successfully predict for DNA 3HS2 A/B-stacking preference from sequence, have been extended to A/C-stacked conformations. Three novel DNA 3HS2 sequences were designed to test the validity of these extended stacking rules and their conformational behavior was studied by solution NMR. All three show the predicted A/C-stacking preference even in the absence of multivalent cations. The stacking preference for both classes of DNA 3HS2 can thus be predicted from sequence. The high-resolution NMR solution structure for one of the stacked 3HS2 is also reported. It shows a well-defined local and global structure defined by an extensive set of classical NMR restraints and residual dipolar couplings. Analysis of its global conformation and that of other representatives of the 3H family, shows that the relative orientations of the stacked and non-stacked arms, are restricted to narrow regions of conformational space, which can be understood from geometric considerations. Together, these findings open up the possibility of full prediction of 3HS2 conformation (stacking and global fold) directly from sequence.  相似文献   

13.
14.
Fang Q  Shortle D 《Proteins》2005,60(1):97-102
In the preceding article in this issue of Proteins, an empirical energy function consisting of 4 statistical potentials that quantify local side-chain-backbone and side-chain-side-chain interactions has been demonstrated to successfully identify the native conformations of short sequence fragments and the native structure within large sets of high-quality decoys. Because this energy function consists entirely of interactions between residues separated by fewer than 5 positions, it can be used at the earliest stage of ab initio structure prediction to enhance the efficiency of conformational search. In this article, protein fragments are generated de novo by recombining very short segments of protein structures (2, 4, or 6 residues), either selected at random or optimized with respect this local energy function. When local energy is optimized in selected fragments, more efficient sampling of conformational space near the native conformation is consistently observed for 450 randomly selected single turn fragments, with turn lengths varying from 3 to 12 residues and all 4 combinations of flanking secondary structure. These results further demonstrate the energetic significance of local interactions in protein conformations. When used in combination with longer range energy functions, application of these potentials should lead to more accurate prediction of protein structure.  相似文献   

15.
16.
A combination of conformational search, energy minimization, and energetic evaluation using a continuum solvent treatment has been employed to study the stability of various conformations of the DNA fragment d(CGCAGAA)/d(TTCGCG) containing a single adenine bulge. The extra-helical (looped-out) bulge conformation derived from a published x-ray structure and intra-helical (stacked bulge base) model structures partially based on nuclear magnetic resonance (NMR) data were used as start structures for the conformational search. Solvent-dependent contributions to the stability of the conformations were calculated from the solvent exposed molecular surface area and by using the finite difference Poisson-Boltzmann approach. Three classes (I-III) of bulge conformations with calculated low energies can be distinguished. The lowest-energy conformations were found in class I, corresponding to structures with the bulge base stacked between flanking helices, and class II, composed of structures forming a triplet of the bulge base and a flanking base pair. All extra-helical bulge structures, forming class III, were found to be less stable compared with the lowest energy structures of class I and II. The results are consistent with NMR data on an adenine bulge in the same sequence context indicating an intra-helical or triplet bulge conformation in solution. Although the total energies and total electrostatic energies of the low-energy conformations show only relatively modest variations, the energetic contributions to the stability were found to vary significantly among the classes of bulge structures. All intra-helical bulge structures are stabilized by a more favorable Coulomb charge-charge interaction but destabilized by a larger electrostatic reaction field contribution compared with all extra-helical and most triplet bulge structures. Van der Waals packing interactions and nonpolar surface-area-dependent contributions appear to favor triplet class II structures and to a lesser degree also the intra-helical stacked bulge conformations. The large conformational variation found for class III conformers might add a favorable entropic contribution to the stability of the extra-helical bulge form.  相似文献   

17.
Pei J  Grishin NV 《Proteins》2004,56(4):782-794
We study the effects of various factors in representing and combining evolutionary and structural information for local protein structural prediction based on fragment selection. We prepare databases of fragments from a set of non-redundant protein domains. For each fragment, evolutionary information is derived from homologous sequences and represented as estimated effective counts and frequencies of amino acids (evolutionary frequencies) at each position. Position-specific amino acid preferences called structural frequencies are derived from statistical analysis of discrete local structural environments in database structures. Our method for local structure prediction is based on ranking and selecting database fragments that are most similar to a target fragment. Using secondary structure type as a local structural property, we test our method in a number of settings. The major findings are: (1) the COMPASS-type scoring function for fragment similarity comparison gives better prediction accuracy than three other tested scoring functions for profile-profile comparison. We show that the COMPASS-type scoring function can be derived both in the probabilistic framework and in the framework of statistical potentials. (2) Using the evolutionary frequencies of database fragments gives better prediction accuracy than using structural frequencies. (3) Finer definition of local environments, such as including more side-chain solvent accessibility classes and considering the backbone conformations of neighboring residues, gives increasingly better prediction accuracy using structural frequencies. (4) Combining evolutionary and structural frequencies of database fragments, either in a linear fashion or using a pseudocount mixture formula, results in improvement of prediction accuracy. Combination at the log-odds score level is not as effective as combination at the frequency level. This suggests that there might be better ways of combining sequence and structural information than the commonly used linear combination of log-odds scores. Our method of fragment selection and frequency combination gives reasonable results of secondary structure prediction tested on 56 CASP5 targets (average SOV score 0.77), suggesting that it is a valid method for local protein structure prediction. Mixture of predicted structural frequencies and evolutionary frequencies improve the quality of local profile-to-profile alignment by COMPASS.  相似文献   

18.
The prediction of protein structure from sequence remains a major unsolved problem in biology. The most successful protein structure prediction methods make use of a divide-and-conquer strategy to attack the problem: a conformational sampling method generates plausible candidate structures, which are subsequently accepted or rejected using an energy function. Conceptually, this often corresponds to separating local structural bias from the long-range interactions that stabilize the compact, native state. However, sampling protein conformations that are compatible with the local structural bias encoded in a given protein sequence is a long-standing open problem, especially in continuous space. We describe an elegant and mathematically rigorous method to do this, and show that it readily generates native-like protein conformations simply by enforcing compactness. Our results have far-reaching implications for protein structure prediction, determination, simulation, and design.  相似文献   

19.
Lee J  Kim SY  Lee J 《Biophysical chemistry》2005,115(2-3):209-214
We propose a novel method for ab-initio prediction of protein tertiary structures based on the fragment assembly and global optimization. Fifteen residue long fragment libraries are constructed using the secondary structure prediction method PREDICT, and fragments in these libraries are assembled to generate full-length chains of a query protein. Tertiary structures of 50 to 100 conformations are obtained by minimizing an energy function for proteins, using the conformational space annealing method that enables one to sample diverse low-lying local minima of the energy. Then in order to enhance the performance of the prediction method, we optimize the linear parameters of the energy function, so that the native-like conformations become energetically more favorable than the non-native ones for proteins with known structures. We test the feasibility of the parameter optimization procedure by applying it to the training set consisting of three proteins: the 10-55 residue fragment of staphylococcal protein A (PDB ID 1bdd), a designed protein betanova, and 1fsd.  相似文献   

20.
Jha AK  Colubri A  Zaman MH  Koide S  Sosnick TR  Freed KF 《Biochemistry》2005,44(28):9691-9702
A central issue in protein folding is the degree to which each residue's backbone conformational preferences stabilize the native state. We have studied the conformational preferences of each amino acid when the amino acid is not constrained to be in a regular secondary structure. In this large but highly restricted coil library, the backbone preferentially adopts dihedral angles consistent with the polyproline II conformation rather than alpha or beta conformations. The preference for the polyproline II conformation is independent of the degree of solvation. In conjunction with a new masking procedure, the frequencies in our coil library accurately recapitulate both helix and sheet frequencies for the amino acids in structured regions, as well as polyproline II propensities. Therefore, structural propensities for alpha-helices and beta-sheets and for polyproline II conformations in unfolded peptides can be rationalized solely by local effects. In addition, these propensities are often strongly affected by both the chemical nature and the conformation of neighboring residues, contrary to the Flory isolated residue hypothesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号