首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The relationship between the synonymous codon usage and different protein secondary structural classes were investigated using 401 Homo sapiens proteins extracted from Protein Data Bank (PDB). A simple Chi-square test was used to assess the significance of deviation of the observed and expected frequencies of 59 codons at the level of individual synonymous families in the four different protein secondary structural classes. It was observed that synonymous codon families show non-randomness in codon usage in four different secondary structural classes. However,when the genes were classified according to their GC3 levels there was an increase in non-randomness in high GC3 group of genes. The non-randomness in codon usage was further tested among the same protein secondary structures belonging to four different protein folding classes of high GC3 group of genes. The results show that in each of the protein secondary structural unit there exist some synonymous family that shows class specific codon-usage pattern. Moreover, there is an increased non-random behaviour of synonymous codons in sheet structure of all secondary structural classes in high GC3 group of genes. Biological implications of these results have been discussed.  相似文献   

2.
We have analyzed factors affecting the codon usage pattern of the chloroplasts genomes of representative species of pooid grass family. Correspondence analysis of relative synonymous codon usages (RSCU) showed that genes on secondary axis were correlated with their GC3S values (all r > 0.3, p < 0.05), indicating mutational bias as an important selective force that shaped the variation in the codon usage among chloroplast genes. The Nc-plot showed that although a majority of the points with low-Nc values were lying below the expected curve, a few genes lied on the expected curve. Nc plot clearly showed that mutational bias plays a major role in codon biology across the monocot plastomes. The hydrophobicity and aromaticity of encoded proteins of each species were found to be other factors of codon usage variation. In the view of above light, besides natural selection, several other factors also likely to be involved in determining the selective constraints on codon bias in plastomes of pooid grass genomes. In addition, five codons (B. distachyon), seven codons (H. vulgare), and four codons (T. aestivum) were identified as optimal codons of the three grass chloroplasts. To identify genes evolving under positive selection, rates of nonsynonymous substitutions (Ka) and synonymous substitutions (Ks) were computed for all groups of orthologous gene pairs.  相似文献   

3.
Synonymous codon usage of 53 protein coding genes in chloroplast genome of Coffea arabica was analyzed for the first time to find out the possible factors contributing codon bias. All preferred synonymous codons were found to use A/T ending codons as chloroplast genomes are rich in AT. No difference in preference for preferred codons was observed in any of the two strands, viz., leading and lagging strands. Complex correlations between total base compositions (A, T, G, C, GC) and silent base contents (A3, T3, G3, C3, GC3) revealed that compositional constraints played crucial role in shaping the codon usage pattern of C. arabica chloroplast genome. ENC Vs GC3 plot grouped majority of the analyzed genes on or just below the left side of the expected GC3 curve indicating the influence of base compositional constraints in regulating codon usage. But some of the genes lie distantly below the continuous curve confirmed the influence of some other factors on the codon usage across those genes. Influence of compositional constraints was further confirmed by correspondence analysis as axis 1 and 3 had significant correlations with silent base contents. Correlation of ENC with axis 1, 4 and CAI with 1, 2 prognosticated the minor influence of selection in nature but exact separation of highly and lowly expressed genes could not be seen. From the present study, we concluded that mutational pressure combined with weak selection influenced the pattern of synonymous codon usage across the genes in the chloroplast genomes of C. arabica.  相似文献   

4.
To understand the synonymous codon usage pattern in mitochondrial genome of Antheraea assamensis, we analyzed the 13 mitochondrial protein‐coding genes of this species using a bioinformatic approach as no work was reported yet. The nucleotide composition analysis suggested that the percentages of A, T, G,and C were 33.73, 46.39, 9.7 and 10.17, respectively and the overall GC content was 19.86, that is, lower than 50% and the genes were AT rich. The mean effective number of codons of mitochondrial protein‐coding genes was 36.30 and it indicated low codon usage bias (CUB). Relative synonymous codon usage analysis suggested overrepresented and underrepresented codons in each gene and the pattern of codon usage was different among genes. Neutrality plot analysis revealed a narrow range of distribution for GC content at the third codon position and some points were diagonally distributed, suggesting both mutation pressure and natural selection influenced the CUB.  相似文献   

5.
Regularities of context-dependent codon bias in eukaryotic genes   总被引:10,自引:1,他引:9       下载免费PDF全文
Nucleotides surrounding a codon influence the choice of this particular codon from among the group of possible synonymous codons. The strongest influence on codon usage arises from the nucleotide immediately following the codon and is known as the N1 context. We studied the relative abundance of codons with N1 contexts in genes from four eukaryotes for which the entire genomes have been sequenced: Homo sapiens, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana. For all the studied organisms it was found that 90% of the codons have a statistically significant N1 context-dependent codon bias. The relative abundance of each codon with an N1 context was compared with the relative abundance of the same 4mer oligonucleotide in the whole genome. This comparison showed that in about half of all cases the context-dependent codon bias could not be explained by the sequence composition of the genome. Ranking statistics were applied to compare context-dependent codon biases for codons from different synonymous groups. We found regularities in N1 context-dependent codon bias with respect to the codon nucleotide composition. Codons with the same nucleotides in the second and third positions and the same N1 context have a statistically significant correlation of their relative abundances.  相似文献   

6.
Codon usage bias (CUB) is an important evolutionary feature in a genome and has been widely documented from prokaryotes to eukaryotes. However, the significance of CUB in the Asteraceae family has not been well understood, with no Asteraceae species having been analyzed for this characteristic. Here, we use bioinformatics approaches to comparatively analyze the general patterns and influencing factors of CUB in five Asteraceae chloroplast (cp) genomes. The results indicated that the five genomes had similar codon usage patterns, showing a strong bias towards a high representation of NNA and NNT codons. Neutrality analysis showed that these cp genomes had a narrow GC distribution and no significant correlation was observed between GC12 and GC3. Parity Rule 2 (PR2) plot analysis revealed that purines were used more frequently than pyrimidines. Effective number of codons (ENc)-plot analysis showed that most genes followed the parabolic line of trajectory, but several genes with low ENc values lying below the expected curve were also observed. Furthermore, correspondence analysis of relative synonymous codon usage (RSCU) yielded a first axis that explained only a partial amount of variation of codon usage. These findings suggested that both natural selection and mutational bias contributed to codon bias, while selection was the major force to shape the codon usage in these Asteraceae cp genomes. Our study, which is the first to investigate codon usage patterns in Asteraceae plastomes, will provide helpful information about codon distribution and variation in these species, and also shed light on the genetic and evolutionary mechanisms of codon biology within this family.  相似文献   

7.
为了分析美丽梧桐、云南梧桐叶绿体基因组密码子的使用偏性,该研究通过筛选美丽梧桐、云南梧桐叶绿体基因组中各52条蛋白编码序列,并利用CodonW、CUSP和SPSS软件对其密码子使用模式及偏性进行了分析。结果表明:(1)美丽梧桐、云南梧桐的GC含量分别为38.12%、38.05%,表明叶绿体基因组内富含A/T碱基。(2)有效密码子数(ENC)范围为36.91~56.46、36.55~58.04,表明多数密码子偏性较弱。(3)相对同义密码子(RSCU)分析显示,RSCU1的密码子各有29个,其中28个以A、U结尾。(4)中性绘图显示,GC_3与GC_(12)的相关性不显著,回归曲线斜率分别为0.195和0.304,说明密码子偏好性主要受到自然选择的影响。(5) ENC-plot分析中大部分基因分布于曲线的周围和下方,ENC比值多分布于-0.04~0.10之间,表明突变会影响密码子偏性的形成。此外,17、18个密码子分别被鉴定为美丽梧桐、云南梧桐的最优密码子。以上结果说明美丽梧桐、云南梧桐叶绿体基因组的密码子使用偏性可能受选择和突变共同作用,且使用模式较为相似,但具有一定的差异,可能与适应环境的进化机制有关。  相似文献   

8.
Chromohalobacter salexigens, a Gammaproteobacterium belonging to the family Halomonadaceae, shows a broad salinity range for growth. In order to reveal the factors influencing architecture of protein coding genes in C. salexigens, pattern of synonymous codon usage bias has been investigated. Overall codon usage analysis of the microorganism revealed that C and G ending codons are predominantly used in all the genes which are indicative of mutational bias. Multivariate statistical analysis showed that the genes are separated along the first major explanatory axis according to their expression levels and their genomic GC content at the synonymous third positions of the codons. Both NC plot and correspondence analysis on Relative Synonymous Codon Usage (RSCU) indicates that the variation in codon usage among the genes may be due to mutational bias at the DNA level and natural selection acting at the level of mRNA translation. Gene length and the hydrophobicity of the encoded protein also influence the codon usage variation of genes to some extent. A comparison of the relative synonymous codon usage between 10% each of highly and lowly expressed genes determines 23 optimal codons, which are statistically over represented in the former group of genes and may provide useful information for salt-stressed gene prediction and gene-transformation. Furthermore, genes for regulatory functions; mobile and extrachromosomal element functions; and cell envelope are observed to be highly expressed. The study could provide insight into the gene expression response of halophilic bacteria and facilitate establishment of effective strategies to develop salt-tolerant crops of agronomic value.  相似文献   

9.
为确定瑶药紫九牛叶绿体基因组密码子的使用模式及其成因,该研究以紫九牛叶绿体基因组50条蛋白质编码序列为研究对象,利用Codon W 1.4.2和在线软件CUSP和Chips分析其密码子偏好性。结果表明:(1)RSCU>1的密码子有29个,其中有28个以A/U结尾,说明叶绿体基因组的同义密码子中偏好以A/U结尾。(2)紫九牛叶绿体基因组密码子的GC含量GC1(47.38%)>GC2(39.81%)>GC3(29.60%),ENC值大于45的有40个,说明紫九牛叶绿体基因组存在较弱的偏性。(3)中性绘图分析和ENC-plot分析说明了紫九牛叶绿体基因组密码子的偏好性既受到选择的作用,又受到突变因素的影响。(4)通过构建的高低基因表达库最终确定了15个最优密码子,分别为UUG、AUU、GUU、GUA、UCU、 CCU、ACU、ACA、GCU、CAA、AAC、GAA、UGU、CGU和GGU。该研究为紫九牛叶绿体基因组的确定以及遗传多样性分析提供了依据。  相似文献   

10.
Mitogen activated protein kinase (MAPK) genes provide resistance to various biotic and abiotic stresses. Codon usage profiling of the genes reveals the characteristic features of the genes like nucleotide composition, gene expressivity, optimal codons etc. The present study is a comparative analysis of codon usage patterns for different MAPK genes in three organisms, viz. Arabidopsis thaliana, Glycine max (soybean) and Oryza sativa (rice). The study has revealed a high AT content in MAPK genes of Arabidopsis and soybean whereas in rice a balanced AT-GC content at the third synonymous position of codon. The genes show a low bias in codon usage profile as reflected in the higher values (50.83 to 56.55) of effective number of codons (Nc). The prediction of gene expression profile in the MAPK genes revealed that these genes might be under the selective pressure of translational optimization as reflected in the low codon adaptation index (CAI) values ranging from 0.147 to 0.208.  相似文献   

11.
The Selective Advantage of Synonymous Codon Usage Bias in Salmonella   总被引:1,自引:0,他引:1  
The genetic code in mRNA is redundant, with 61 sense codons translated into 20 different amino acids. Individual amino acids are encoded by up to six different codons but within codon families some are used more frequently than others. This phenomenon is referred to as synonymous codon usage bias. The genomes of free-living unicellular organisms such as bacteria have an extreme codon usage bias and the degree of bias differs between genes within the same genome. The strong positive correlation between codon usage bias and gene expression levels in many microorganisms is attributed to selection for translational efficiency. However, this putative selective advantage has never been measured in bacteria and theoretical estimates vary widely. By systematically exchanging optimal codons for synonymous codons in the tuf genes we quantified the selective advantage of biased codon usage in highly expressed genes to be in the range 0.2–4.2 x 10−4 per codon per generation. These data quantify for the first time the potential for selection on synonymous codon choice to drive genome-wide sequence evolution in bacteria, and in particular to optimize the sequences of highly expressed genes. This quantification may have predictive applications in the design of synthetic genes and for heterologous gene expression in biotechnology.  相似文献   

12.
同义密码子携带多少蛋白质二级结构信息   总被引:4,自引:0,他引:4  
应用信息论方法考察了大肠杆菌人两种生物的同义密码子用语和蛋白质二级结构的关联情况。研究结果表明:大肠杆菌和人的基因组中都存在着一些同义密码子明显携带有蛋白质二级结构信息,尽管这些信息量都很小;同义密码子与蛋白质二级结构的关联是种属特异性。  相似文献   

13.
The compositional non-randomness was studied in genes of Saccharomyces cerevisiae and Schizosaccharomyces pombe. In both species, codon usage is well correlated with expressivity (measured as the codon adaptation index). Both species generally display higher nucleotide non-randomness in the group of highly expressed genes than in the lowly expressed genes. The highly expressed genes in both species are furthermore characterized by marked peaks in non-randomness at N=3 upstream of start codons, N=2 downstream of start codons and at N=1 and N=7 downstream of stop codons, indicating that these nucleotides may be key elements in translational regulation. Intragenic variation in codon usage was also observed to be linked to expressivity. It is suggested that the firm link between expressivity and codon usage calls for codon optimization. Based on bioinformatic calculations, examples of proteins are given for which codon optimizations might be relevant.  相似文献   

14.
15.
It is well known that stop codons play a critical role in the process of protein synthesis. However, little effort has been made to investigate whether stop codon usage exhibits biases, such as widely seen for synonymous codon usage. Here we systematically investigate stop codon usage bias in various eukaryotes as well as its relationships with its context, GC3 content, gene expression level, and secondary structure. The results show that there is a strong bias for stop codon usage in different eukaryotes, i.e., UAA is overrepresented in the lower eukaryotes, UGA is overrepresented in the higher eukaryotes, and UAG is least used in all eukaryotes. Different conserved patterns for each stop codon in different eukaryotic classes are found based on information content and logo analysis. GC3 contents increase with increasing complexity of organisms. Secondary structure prediction revealed that UAA is generally associated with loop structures, whereas UGA is more uniformly present in loop and stem structures, i.e., UGA is less biased toward having a particular structure. The stop codon usage bias, however, shows no significant relationship with GC3 content and gene expression level in individual eukaryotes. The results indicate that genomic complexity and GC3 content might contribute to stop codon usage bias in different eukaryotes. Our results indicate that stop codons, like synonymous codons, exhibit biases in usage. Additional work will be needed to understand the causes of these biases and their relationship to the mechanism of protein termination. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

16.
Gu W  Zhou T  Ma J  Sun X  Lu Z 《Bio Systems》2004,73(2):89-97
The role of silent position in the codon on the protein structure is an interesting and yet unclear problem. In this paper, 563 Homo sapiens genes and 417 Escherichia coli genes coding for proteins with four different folding types have been analyzed using variance analysis, a multivariate analysis method newly used in codon usage analysis, to find the correlation between amino acid composition, synonymous codon, and protein structure in different organisms. It has been found that in E. coli, both amino acid compositions in differently folded proteins and synonymous codon usage in different gene classes coding for differently folded proteins are significantly different. It was also found that only amino acid composition is different in different protein classes in H. sapiens. There is no universal correlation between synonymous codon usage and protein structure in these two different organisms. Further analysis has shown that GC content on the second codon position can distinguish coding genes for different folded proteins in both organisms.  相似文献   

17.
Synonymous codon choices vary considerably among Schistosoma mansoni genes. Principal components analysis detects a single major trend among genes, which highly correlates with GC content in third codon positions and exons, but does not discriminate among putatively highly and lowly expressed genes. The effective number of codons used in each gene, and its distribution when plotted against GC3, suggests that codon usage is shaped mainly by mutational biases. The GC content of exons, GC3, 5′, 3′, and flanking (5′+ 3′+ introns) regions are all correlated among them, suggesting that variations in GC content may exist among different regions of the S. mansoni genome. We propose that this genome structure might be among the most important factors shaping codon usage in this species, although the action of selection on certain sequences cannot be excluded. Received: 10 March 1997 / Accepted: 27 June 1997  相似文献   

18.
It is shown that synonymous codon usage is less biased in favor of those codons preferred by highly expressed genes at the end ofEscherichia coli genes than in the middle. This appears to be due to the close proximity of manyE. coli genes. It is shown that a substantial number of genes overlap either the Shine-Dalgarno sequence or the coding sequence of the next gene on the chromosome and that the codons that overlap have lower synonymous codon bias than those which do not. It is also shown that there is an increase in the frequency of A-ending codons, and a decrease in the frequency of G-ending codons at the end ofE. coli genes that lie close to another gene. It is suggested that these trends in composition could be associated with selection against the formation of mRNA secondary structure near the start of the next gene on the chromosome. Stop codon use is also affected by the close proximity of genes; many genes are forced to use TGA and TAG stop codons because they terminate either within the Shine-Dalgarno or coding sequence of the next gene on the chromosome. The implications these results have for the evolution of synonymous codon use are discussed.  相似文献   

19.
A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm speciesOryza sativa, Zea mays, Triticum aestivum andArabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in chloroplast genes, suggesting different genomic organization and mutation pressures in nuclear and chloroplast genes. The results of Nc-plots and neutrality plots suggested that nucleotide compositional constraint had a large contribution to codon usage bias of nuclear genes inO. sativa, Z. mays, andT. aestivum, whereas natural selection was likely to be playing a large role in codon usage bias in chloroplast genomes. Correspondence analysis and chi-test showed that regardless of the genomic environment (species) of the host, the codon usage pattern of chloroplast genes differed from nuclear genes of their host species by their AU-richness. All the chloroplast genomes have predominantly A- and/or U-ending codons, whereas nuclear genomes have G-, C- or U-ending codons as their optimal codons. These findings suggest that the chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear genome. However, one feature common to both chloroplast and nuclear genomes in this study was that pyrimidines were found more frequently than purines at the synonymous codon position of optimal codons.  相似文献   

20.
樟树叶绿体基因组密码子偏好性分析   总被引:3,自引:0,他引:3  
秦政  郑永杰  桂丽静  谢谷艾  伍艳芳 《广西植物》2018,38(10):1346-1355
为分析樟树(Cinnamomum camphora)叶绿体基因组密码子偏好性使用模式,该研究利用CodonW、EMBOSS、R语言等软件和程序,对53条樟树叶绿体基因组密码子使用模式及偏好性进行了系统分析。结果表明:樟树叶绿体基因的有效密码子数(ENC)在36.82~59.30之间,表明密码子的偏好性较弱。相对同义密码子使用度(RSCU)分析发现RSCU>1的密码子有32个,其中28个以A、U结尾,表明第3位密码子偏好使用A和U碱基。中性绘图分析发现GC3与GC12的相关性不显著,回归曲线斜率为0.049,说明密码子偏好性主要受到自然选择的影响。ENC-plot分析发现大部分基因落在曲线的下方,同样表明选择是影响密码子偏好性的主要因素。该研究发现共有9个密码子(UUU、CUU、UCA、ACA、UAU、AAU、GAU、UGA、GGA)被鉴定为樟树叶绿体基因组的最优密码子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号