首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two globulin storage proteins have been identified in spores of the ostrich fern, Matteuccia struthiopteris (L.) Todaro. The two proteins comprise a significant amount of the total spore protein, are predominantly salt-soluble, and can be extracted by other solvents to a limited extent. The large 11.3 Svedberg unit (S) globulin is composed of five polypeptides with molecular weights of 21,000, 22,000, 24,000, 28,000 and 30,000. Each polypeptide has several isoelectric point (pI) variants between pH 5 and 7. The small 2.2S storage protein has a pI > 10.5 and is composed of at least two major polypeptides of 6,000 and 14,000 Mr. The amino acid composition of both storage proteins reveals that the 11.3S protein is particularly rich in aspartic and glutamic acid, while the 2.2S protein has few acidic amino acids. During imbibition and germination the globulin fraction declines rapidly, with a corresponding degradation of individual polypeptides of each protein. Polyclonal antibodies against each of the two proteins were produced and used for immunolocalization to determine the site of storage protein deposition within the quiescent spore. The proteins were sequestered in protein bodies of 2 to 10 micrometers, that are morphologically similar to those found in the seeds of flowering plants. The results suggest that spore globulins are biochemically similar to seed globulins, especially those found in some cruciferous seeds.  相似文献   

3.
Vicilin and legumin, the storage globulins of mature dry vetch (Vicia sativa L.) seeds, are found in protein bodies which are present not only in the cotyledons, but also in the radicle, axis and shoot (together, for reasons of simplicity, here called axis). When at 24 h after the start of imbibition (hai) the radicle breaks through the seed coat a major part of the globulins in the axis has already been degraded, whereas in the cotyledons globulin breakdown cannot yet be detected. Globulin mobilization starts with the degradation of vicilin. At 48 hai when globulin mobilization in the cotyledons just begins, the axis is already nearly depleted of globulins. Mobilization of storage globulin is probably brought about by a complex of different cysteine proteinases (CPRs). The papain-like CPR2 and CPR4, and the legumain-like VsPB2, together with their mRNAs, are already present in axes and cotyledons of dry seeds. This means that they must have been formed during seed maturation. Additional papain-like CPRs are formed later during germination and seedling growth. CPR4 and VsPB2 together with their corresponding mRNAs become undetectable as germination and seedling growth proceed. VsPB2 and VsPB2-mRNA are substituted by the homologous legumain-like proteinase B and its mRNA. The composition of stored and newly formed CPRs undergoes developmental changes which differ between axes and cotyledons. It is concluded that storage globulin mobilization in germinating vetch seeds is started by stored CPRs, whereas the mobilization of the bulk of globulin is predominantly mediated by CPRs which are formed de novo.  相似文献   

4.
The effect of the limited proteolysis by trypsin on selected seed storage 11S globulins (broad bean and pea legumins, glycinin and helianthinin) was studied by high-sensitive differential scanning calorimetry, fluorescence spectroscopy and analysis of proteolysis kinetics. Different behaviour of glycinin and helianthinin, on one hand, and broad bean and pea legumins, on the other, were observed: in the first group changes in the physicochemical characteristics of the proteins due to their limited proteolysis are more pronounced in comparison with the second one, in relation with the extent of primary structure modifications. The differences observed have been evaluated in relation with the amino acid sequence features of the four 11S globulin studied and agree with the literature data concerning the protein structural changes in the course of the limited proteolysis.  相似文献   

5.
Cotyledons of dry buckwheat (Fagopyrum esculentum Moench) seeds were used to study the cellular localization of a metalloproteinase which performs in vitro the initial limited proteolysis of the main storage protein of the seed, and of its proteinaceous inhibitor. Fractions of complex protein bodies (PB 1) and of the cytoplasm and membrane material (CMM) were obtained by fractionating cotyledons in a mixture of acetone and CCl4. The greater part of the metalloproteinase activity was found to be localized in the PB 1 fraction, with a lesser amount in the CMM fraction, whereas the metalloproteinase inhibitor was localized almost entirely in the PB 1 fraction. The data obtained indicate that the complex protein bodies of dry buckwheat seeds contain the components of the proteolytic system responsible for the initial degradation of the main storage protein — the 13S globulin — of buckwheat seeds, i.e. 13S globulin, the metalloproteinase, and its inhibitor. This confirms that it is possibile for the metalloproteinase to perform a controlled proteolysis of the 13S globulin in vivo. The effect of divalent cations on the degradation of the 13S globulin was also studied. A mechanism is discussed whereby the proteolysis of 13S globulin is initiated by divalent cations released as a result of phytin decationization during seedling growth.Abbreviations CMM cytoplasm and membrane material - PAGE polyacrylamide gel electrophoresis - PB 1 complex protein bodies with globoids  相似文献   

6.
The changes in the main storage protein of seeds of buckwheat ( Fagopyrum esculentum Moench cv. Shatilovskaya 5), 13S globulin, were studied during seed germination. During the first three days of germination the 13S globulin is subjected to a limited proteolysis, which consists in the splitting of some of its subunits into large polypeptide fragments. Insignificant changes in the sedimentation coefficient of the 13S globulin during the first days of germination as well as immunochemical data, indicate that the limited proteolysis of the 13S globulin does not cause any major changes in its structure.
Dormant buckwheat seeds contain a proteolytic enzyme (a metalloproteinase), which can cause limited proteolysis of 13S globulin. The proteinase hydrolyzed some subunits of the 13S globulin to high molecular weight fragments. In the presence of sodium dodecylsulphate the electrophoretic pattern of 13S globulin, isolated from 3-day-old buckwheat seedlings, was almost identical to that of 13S globulin from dormant seeds hydrolyzed with metalloproteinase. It is suggested that the proteolysis of 13S globulin observed in vitro may also take place in vivo in the course of seed germination.  相似文献   

7.
Amaranth is a dicotyledonous plant whose major seed storage proteins are globulins and glutelins. An unique feature of amaranth seeds is the presence of a fraction named albumin-2, that is extractable with water only after an exhaustive extraction of globulins and albumin-1. In this work, we tested the hypothesis that albumin-2 fraction could be constituted by a non-processed 11S globulin (proglobulin). To this end, the gene encoding the amaranth 11S subunit was cloned and expressed in Escherichia coli. Subsequently, the recombinant proglobulin and albumin-2 purified from seeds were treated with a sunflower vacuolar processing enzyme (VPE). A 55 kDa component of albumin-2 was specifically cleaved into 38 and 17-15 kDa polypeptides, as a consequence of this endoproteolytic cleavage a change of the oligomeric state from trimeric to hexameric was observed. Amaranth 11S globulin fraction was not modified under these proteolysis conditions. Using VPE-specific antibodies, it was shown that amaranth expresses a 57 kDa VPE, and that both developing and mature amaranth seeds have VPE activity, although the increase of this activity during amaranth seed development is higher than that observed for sunflower seeds. These results confirm the presence of unprocessed 11S precursors in mature amaranth seeds; this phenomenon cannot, however, be attributed to low VPE activity during developing of amaranth seeds.  相似文献   

8.
9.
Proteolytic cleavage plays an important role in storage proteindeposition and reactivation in seeds. Precursor polypeptidesare processed by limited proteolysis to mature subunits of reserveproteins in storage tissue cells of developing seeds. Stepsof proteolytic processing are closely related to steps in intracellularprotein transfer through the endomembrane system and to thedeposition in the storage vacuole. In germinating seeds specialendopeptidases trigger storage protein breakdown by limitedproteolysis. The induced conformation changes of storage proteinsopen them to attack by additional endo- and exopeptidases whichdegrade the protein reserves completely. Proteases that catalyselimited cleavage or complete degradation are synthesized asprecursors which also undergo stepwise limited proteolysis whenthey are formed in cotyledons of developing or germinating seeds.In general, this processing transforms enzymatically inactiveproenzymes into active proteases. Different compartments participatein the processing steps. Many of the proteases are encoded bysmall multigene families. Different members of the correspondingprotease families seem to act during seed development and germination.Proteolytic processes that contribute to the molecular maturationand to the reactivation of storage proteins in dicotyledonousseeds seem to be controlled by (1) differential expression ofmembers of the protease-encoding gene families; (2) stepwiseprocessing and activation of protease precursor polypeptides;(3) transient differential compartmentation of precursors andmature polypeptides of proteases and storage proteins, respectively;and (4) interacting changes in storage protein structure andprotease action. The present knowledge on these processes isreviewed. Key words: Dicotyledons, seeds, storage proteins, proteolytic cleavage, proteases  相似文献   

10.
The synthesis of major storage globulin polypeptides has been examined in developing seeds of sunflower(Helianthus annuus L.). Analyses of total proteins and purified globulins, also called helianthinin, by gel electrophoresis and immunoelectrophoresis have shown that a burst of protein synthesis and accumulation occurs around 10 d after flowering. There is no mature globulin before that time and only small amounts of precursor forms can be detected. Thus, 10–12 d after flowering appears to be a transition period during which genetic information for the globulin becomes actively expressed. Immunoelectrophoresis has confirmed that globulin is the main storage protein, at seed maturation, accounting up to 70 % of total proteins per kernel. Pulse chase experiments have shown that synthesis initially involves the formation of high molecular mass precursors and that storage proteins are post-translationally processed. Intermediary products, with molecular mass higher than early translational products, can be detected, together with mature globulin polypeptides.  相似文献   

11.
12.

Background

Seed storage proteins are a major source of dietary protein, and the content of such proteins determines both the quantity and quality of crop yield. Significantly, examination of the protein content in the seeds of crop plants shows a distinct difference between monocots and dicots. Thus, it is expected that there are different evolutionary patterns in the genes underlying protein synthesis in the seeds of these two groups of plants.

Results

Gene duplication, evolutionary rate and positive selection of a major gene family of seed storage proteins (the 11S globulin genes), were compared in dicots and monocots. The results, obtained from five species in each group, show more gene duplications, a higher evolutionary rate and positive selections of this gene family in dicots, which are rich in 11S globulins, but not in the monocots.

Conclusion

Our findings provide evidence to support the suggestion that gene duplication and an accelerated evolutionary rate may be associated with higher protein synthesis in dicots as compared to monocots.  相似文献   

13.
During seed development and maturation, large amounts of storage proteins are synthesized and deposited in protein storage vacuoles (PSVs). Multiple mechanisms have been proposed to be responsible for transporting storage proteins to PSVs in developing seeds. In this study, a specific antibody was raised against the mung bean (Vigna radiata) seed storage protein 8S globulin and its deposition was followed via immunogold electron microscopy in developing mung bean cotyledons. It is demonstrated that non-aggregated 8S globulins are present in multivesicular bodies (MVBs) in early stages of cotyledon development where neither dense vesicles (DVs) nor a PSV were recognizable. However, at later stages of cotyledon development, condensed globulins were visible in both DVs and distinct MVBs with a novel form of partitioning, with the internal vesicles being pushed to one sector of this organelle. These distinct MVBs were no longer sensitive to wortmannin. This study thus indicates a possible role for MVBs in transporting storage proteins to PSVs during the early stage of seed development prior to the involvement of DVs. In addition, wortmannin treatment is shown to induce DVs to form aggregates and to fuse with the plasma membrane.  相似文献   

14.
This study was aimed at the characterization of the major storage proteins in Arabidopsis thaliana. Two major protein fractions, i.e., the fraction Ⅰ and Ⅱ proteins, were isolated from the extract of mature seeds of this plant by molecular seive gel filtration chromatography. Various polyacrylarnide gel electrophoretic techniques were used to study the properties and polypeptide compositions of these two protein fractions. In was shown that during the SDS gel electrophoresis, fraction Ⅰ protein was separated into 6 major bands with the mol. was. of 34, 31, 29, 28 and 19-20 kD, respectively, whereas Fraction Ⅱ protein migrated as 3 low mol. wt. bands (10-12 kD) on the same gel. Non-denaturing native gel electrophoresis revealed that fraction Ⅰ was a neutral protein and Fraction Ⅱ was a positively charged basic protein with an isoelectric point (pI) higher than 8.8. Fraction I protein was further separated into at least 16 polypeptides in isoelectric focusing/SDS two-dimensional gel electrophoresis, i.e. each SDS band contained 3-4 polypeptides with the same mol. wt. but different pis. This suggested a more complex polypeptide composition of this protein. The properties of fraction Ⅰ and Ⅱ proteins were in good accordance with that of the 12s and 1.7s storage globulins in seeds of many other dicotyledonous plants, and therefore had been characterized as the two major seed storage proteins in this species. These two storage globulins were shown to be accumulated within a defined period during the late stage of seed development (12-14 DAF) and became predominant protein components in mature seeds. In the mean time, a few points in relation to the polypeptide composition and subunit molecular configuration of the 12s globulin were noted.  相似文献   

15.
Conglutins are multisubunit, glycosylated, major storage proteins present in Lupinus seeds that self-aggregate in a calcium/magnesium-dependent manner. Two of these globulins exhibit lectin activity. The 210 kDa globulin derived from beta-conglutin that accumulates in Lupinus cotyledons during germination was used as a model protein to establish whether the self-aggregation process is electrostatic in nature or lectin-mediated. This protein binds in a very strong manner to chitin and recognizes a variety of glycoproteins including immunoglobulins G. Several compounds were tested for their inhibitory effect on the cation-dependent self-aggregation process. Sialic acid and phytin were the most effective whereas chitin and mucin were totally ineffective. The inability of the oligosaccharidic side chains of the 210 kDa protein, beta-conglutin and immunoglobulin G to interfere with the aggregation strongly supports the view that Ca/Mg are electrostatically involved in the in vitro self-aggregation of Lupinus globulins. The results suggest that calcium and magnesium ions are also electrostatically involved in vivo in the macromolecular aggregation of legume seed storage proteins, ensuring their efficient packing inside the protein storage vacuoles. This mechanism is responsible for the typical insolubility of legume globulins in water.  相似文献   

16.
Analysis of seed storage protein genes of oats   总被引:6,自引:0,他引:6  
  相似文献   

17.
Onoclea sensibilis was found to contain globulin storage proteins of 2.0S and 11.3S. These globulins, comparable in size and subunit composition to the spore storage proteins characterized in Matteuccia struthiopteris (Templeman, DeMaggio, and Stetler, 1987), declined during imbibition and the initial stages of spore germination. Osmunda cinnamomea, a fern that is only distantly related to Matteuccia, also contained globulin proteins, but these had S values of 5.5 and 11.3. SDS-PAGE analysis revealed extensive differences in banding patterns of the 11.3S protein between Onoclea and Osmunda. This work indicates that while globulin proteins are important storage materials in a variety of ferns they exhibit considerable molecular heterogeneity. The observed heterogeneity in the globulin proteins may be a useful tool to explore evolutionary relationships in the ferns.  相似文献   

18.
高等植物种子成熟过程中贮存大量的贮藏蛋白质作为种子发芽和初期生长的重要营养来源。根据溶解性不同,种子贮藏蛋白质可分为白蛋白、球蛋白、醇溶蛋白和谷蛋白4类。在种子胚发育过程中,醇溶蛋白在粗面内质网合成后形成蛋白质聚集体,直接出芽形成蛋白体并贮存其中。白蛋白、球蛋白和谷蛋白在粗面内质网以分子量较大的前体形式合成后,根据各自的分选信号进入特定的运输囊泡,经由受体依赖型运输/聚集体形式运输转运至蛋白质贮藏型液泡中,然后经过液泡加工酶等的剪切转换为成熟型贮藏蛋白质并贮存其中。蛋白质的合成、分选、转运和加工等过程影响种子蛋白质的品质及含量。该文对种子贮藏蛋白质的分类和运输、加工以及这些过程对种子蛋白质品质和含量的影响进行了概述。  相似文献   

19.
植物种子贮藏蛋白质及其细胞内转运与加工   总被引:1,自引:0,他引:1  
韩宝达  李立新 《植物学报》2010,45(4):492-505
高等植物种子成熟过程中贮存大量的贮藏蛋白质作为种子发芽和初期生长的重要营养来源。根据溶解性不同, 种子贮藏蛋白质可分为白蛋白、球蛋白、醇溶蛋白和谷蛋白4类。在种子胚发育过程中, 醇溶蛋白在粗面内质网合成后形成蛋白质聚集体, 直接出芽形成蛋白体并贮存其中。白蛋白、球蛋白和谷蛋白在粗面内质网以分子量较大的前体形式合成后, 根据各自的分选信号进入特定的运输囊泡, 经由受体依赖型运输/聚集体形式运输转运至蛋白质贮藏型液泡中, 然后经过液泡加工酶等的剪切转换为成熟型贮藏蛋白质并贮存其中。蛋白质的合成、分选、转运和加工等过程影响种子蛋白质的品质及含量。该文对种子贮藏蛋白质的分类和运输、加工以及这些过程对种子蛋白质品质和含量的影响进行了概述。  相似文献   

20.
Tiedemann J  Neubohn B  Müntz K 《Planta》2000,211(1):1-12
The temporal and spatial patterns of storage-globulin mobilization were immunohistochemically pursued in the embryonic axis and cotyledons of vetch seed (Vicia sativa L.) during germination and early seedling growth. Embryonic axes as well as cotyledons of mature seeds contain protein bodies with stored globulins. Prevascular strands of axes and cotyledons, the radicle and epidermal layers of axis organs were nearly exclusively stained by vicilin antibodies whereas the cotyledonous storage mesophyll gave similar staining for vicilin and legumin. Globulin breakdown started locally where growth and differentiation commenced in the axis. There, vicilin mobilization preceded legumin mobilization. Thus vicilin represents the initial source of amino acids for early growth and differentiation processes in vetch. Legumin presumably only serves as a bulk amino acid source for subsequent seedling growth during postgerminative globulin degradation. During the first 2–3 d after the start of imbibition the axis was depleted of globulins whereas no decrease in immunostainability was detected in the cotyledons except in their vascular strands where immunostainability was almost completely lost at this time. Continuous vascular strands were established at the third day when globulin breakdown was finished in the axis but had just started in the cotyledon mesophyll. Protein mobilization proceeded in a small zone from the epidermis towards the vascular strands in the center of the cotyledons. In this zone the storage cells, which initially appeared densely packed with starch grains and protein bodies, concomitantly transformed into cells with a large central vacuole and only a thin cytoplasmic layer attached to the cell wall. These results agree well with the hypothesis that during the first 2 d after imbibition the axis is autonomous in amino acid provision. After the endogenous reserves of the axis are depleted and the conductive tissue has differentiated, globulins are mobilized in the cotyledons, suggesting that then the amino acid supply is taken over by the cotyledons. For comparison with other degradation patterns we used garden bean (Phaseolus vulgaris L) and rape (Brassica napus L.) as reference plants. Received: 3 August 1999 / Accepted: 11 December 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号