首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

2.
Measuring the Canopy Net Photosynthesis of Glasshouse Crops   总被引:3,自引:0,他引:3  
A null balance method is described for measuring net photosynthesisof mature canopies of cucumber and other protected crops overperiods of 10 min in a single-span glasshouse (c. 9m x 18m inarea). Accuracy of control of the CO2 concentration in the greenhouseatmosphere is within ±10 vpm of the normal ambient level(c. 350 vpm). The amounts of CO2 used in canopy net photosynthesisare measured with linear mass flowmeters accurate to within±0.80g. The total errors incurred in measuring canopynet photosynthesis at an ambient CO2 level are estimated tobe of the order of ± 1·2% in bright light (350W m–2, PAR)and ±3·6% in dull light (100W m–2, PAR). Measurements of the rates of net photosynthesis of a maturecanopy of a cucumber crop were made at near-ambient CO2 concentrationsover a range (0–350 W m–2) of natural light fluxdensities. A model of light absorption and photosynthesis applicableto row crops was used to obtain a net photosynthesis versuslight response curve for the cucumber crop. At a light fluxdensity of 350 W m–2 the fitted value of canopy net photosynthesiswas 2.65 mg CO2 m–2s–1 (equivalent to over 95 kgCO2 ha–1h–1). The results are discussed in relationto the need for CO2 supplements to avoid depletion in both ventilatedand unventilated glasshouses during late spring and summer. Key words: Glasshouse crops, cucumber, measurement, canopy photosynthesis, light, CO2  相似文献   

3.
KAMALUDDIN  M.; GRACE  J. 《Annals of botany》1992,69(6):557-562
Acclimation of fully developed leaves of Bischofia javanicaBlume to shadelight was examined. Seedlings were grown undersimulated daylight (1000 µmol m–2 s–1), thentransferred to a simulated shadelight (40 µmol m–2s–1). When a high-light leaf was transferred to low light, large negativenet photosynthetic rates (Pm) were recorded. This decrease wasrapid, but within 7 d the rate increased and became equal tothe low-light control leaf. These changes in photosynthesisdid not follow the pattern of changes in stomatal conductance(gs). Transfer to the low light resulted in a dramatic decreasein leaf weight per unit area (Lw), and most of the decreasesin Lw occurred within 3 d of transfer when the Pm of the transferredleaf was well below that of the low-light control leaf. There was a significant decrease in chlorophyll a in the transferredleaf without an appreciable change in chlorophyll b resultingin a large decrease in the chlorophyll a to chlorophyll b ratio.Leaf chlorophylls per unit area were higher in the transferredleaf than the low-light control leaf. Maximum photosyntheticrate in the transferred leaf was decreased by 40% compared tothat for the high-control leaf, but was almost at the same extenthigher than the low-light control leaf The results are discussedin the context of carbon gain capacity of its seedlings underlight-limiting forest understorey habitats. Bischofia, chlorophylls, light, photosynthesis, shade acclimation, tree seedlings, tropical tree  相似文献   

4.
Carbon dioxide and water vapour exchanges for single attachedleaves of the temperate C4 grass Spartina townsendii were measuredunder controlled environment conditions in an open gas-exchangesystem. The responses of net photosynthesis, stomatal resistance,and residual resistance to leaf temperature and photon fluxdensity are described. The light and temperature responses ofnet photosynthesis in S. townsendii are compared to informationon these responses in both temperate C3 grasses and sub-tropicalC4 grasses. Adaptation of photosynthesis in this C4 speciesto a cool temperate climate is indicated both by the light andtemperature responses of net photo-synthesis. Unlike the C4grasses examined previously, significant rates of net photosynthesiscan be detected at leaf temperatures below 10?C. Rates of netphotosynthesis equal or exceed those reported for temperateC3 grasses at all of the temperature (5–40?C) and photonflax density (13–2500µmol m–2 s–1) conditionsexamined. Maximum rates of net photosynthesis in S. townsendiiare almost double those reported for C3 herbage grasses. Unliketemperate C3 grasses, the major limitation to net photosynthesisat low leaf temperatures (10?C and below) is the stomatal resistance,showing that the low residual resistance characteristic of C4species is maintained in S. townsendii even at low leaf temperatures.  相似文献   

5.
Rates of net photosynthesis of the flag leaves of 15 genotypesof wheat and related species were measured throughout theirlife, using intact leaves on plants grown in the field. At thestage when rates were maximal, they were in general highestfor the diploid species, intermediate for the tetraploidspeciesand lowest for Triticum aestivum (means of 38, 32 and 28 mgCO2 dm–2 h–1 respectively). Rates were stronglynegatively correlated with leaf area, leaf width and the meanplan area per mesophyll cell and positvely correlated with stomatalfrequency and number of veins per mm of leaf width. The differencesamong species in these attributes were mainly related to ploidylevel. It was not possible to determine the relative importanceof each anatomical feature, though the changes in stomatal frequencyhad only slight effects on stomatal conductance and the observeddifferences in rates of photosynthesis were much greater thanwould be expected from those in stomatal conductance alone. There was genetic variation in rates of light dependent oxygenevolution of isolated protoplasts and intact chloroplasts butno difference attributable to ploidy. The mean rate, 91 µmolO2 mg–1 chlorophyll h–1, equivalent to 3.9 mg CO2mg-1chlorophyll h-1 was considerably less than the rate of photosynthesisin comparable intact leaves, which was 7.2 mg CO2 mg–1chlorophyll h–1. The total above-ground dry matter yields were least for thewild diploids T. urartu and T. thauodar and the wild tetraploidT. dicoccoides, but the other wild diploids produced as muchdry matter as the hexaploids. The prospects of exploiting differences in photosynthetic ratein the breeding of higher yielding varieties are discussed. Triticum aestivum L., wheat, Aegilops spp, photosynthesis, stomatal conductance, stomatal frequency, polyploidy  相似文献   

6.
Measurements of microclimate and photosynthesis of lucerne var.Europe were made in the field during the spring of 1976. Themaximum rate of canopy gross photosynthesis (14.3 g CO2 m–2h–1, I = ) was 2.5 times greater than that of S 24 perennialryegrass at the same LAI. This difference was due to differencesin individual leaf photosynthesis. The photosynthetic rate ofthe youngest fully expanded leaf of lucerne remained constantthroughout the experimental period at 3.6 g CO2 m–2 h–1(300 W m–2). Measurements of soil water potential profiles indicated thatlucerne extracted water from the soil to a depth of at least800 mm, with a region of maximum uptake between 400 and 600mm. This capability, with a moderate mean leaf resistance of460 s m–1, conferred a high assimilation efficiency onlucerne, with a mean water use efficiency of 34 g H2O lost pergram of carbohydrate assimilated, compared with 200 g H2O pergram of carbohydrate for S 24. Medicago sativa L, lucerne, photosynthesis, assimilation efficiency  相似文献   

7.
Apoplastic pH of intact leaves of Vicia faba as influenced by light   总被引:3,自引:0,他引:3  
The fluorochrome FITC-dextran was used to measure the effectof light on the apoplastic pH of intact Vicia faba leaves withthe ratio imaging technique. In darkadapted leaves the apoplasticpH varied depending on the leaf between 5.2 and 5.9. Red light(660 nm, 4–12 W m–2) leads to multiphasic responses:in the first seconds an alkalinization ({small tilde}0.3 pHunits), and thereafter an acidification of the leaf apoplast({small tilde}0.4 pH units) were observed. Both effects couldbe inhibited by DCMU. While variation of CO2 concentration revealedno effect on light-induced apoplastic pH changes, a decreasein O2 concentration decreased the effect. On the basis of ourdata it is suggested that the influence of photosynthesis onplasmalemma H+ ATPase is responsible for the observed effects,rather than altered CO2 uptake. Key words: Leaf apoplast, apoplastic pH, light, ratio imaging, pH-sensitive fluorescent dye, Vicia fab  相似文献   

8.
Photosynthesis by developing embryos of oilseed rape (Brassica napus L.)   总被引:1,自引:0,他引:1  
The aim of this study was to assess the photosynthetic potentialof developing seeds of oilseed rape (Brassica napus L.) andto compare photosynthetic properties of embryo plastids withthose of leaf chloroplasts from the same species. Measurementsof CO2-dependent O2 evolution show that developing seeds ofB. napus are photosynthetically active in vitro. Essentially,all of the photosynthetic activity of the developing seed isaccounted for by the embryo. The rate of photosynthesis by developingembryos increased until the onset of desiccation, after whichit declined, so that by maturity embryos were no longer photosyntheticallyactive. Photosynthetic activity was positively correlated withchlorophyll content throughout development. Comparison of thephotosynthetic characteristics of leaf and embryo chloroplastsrevealed that rates of uncoupled electron transport were 2.5-foldgreater in those from the embryo. Light-saturated rates of CO2-dependentO2 evolution, per unit chlorophyll, and CO2 saturation pointswere similar for chloroplasts from both tissues. However, light-saturationpoints and chlorophyll a/b ratios were lower for embryo thanfor leaf choroplasts. Embryos and embryo chloroplasts also containedconsiderably less ribulose 1,5-bisphosphate carboxylase/oxygenaseprotein per unit total protein, than leaves. Although excisedembryos were capable of high rates of CO2-dependent O2 evolution(90–100 mol mg–1 chlorophyll h–1) under asaturating photosynthetic photon flux density (PPFD), low transmittanceof light through the silique wall (30%), together with the highPPFD required to achieve light compensation points in developingseeds (500 mol m–2 s–1), suggests that photosynthesisin vivo is unlikely to make a net contribution to carbon economyunder normal environmental conditions. Key words: Embryo, development, photosynthesis, chloroplast, Brassica napus L.  相似文献   

9.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

10.
The short-term dependence of NO3 uptake upon photosynthesisand sugar supply to the roots of soybean plants was investigatedin a series of experiments where CO2 availability, light intensityor conduction of phloem sap to the roots were severely limited.Removal of CO2 from the atmosphere or girdling of the stem equallyprevented the stimulation of NO3 uptake when plants weretransferred from darkness to the light. The effect of thesetwo treatments can be reversed by CO2 re-supply or by additionof 10 mM glucose in the nutrient solution, respectively. Glucosewas also more effective in stimulating NO3 uptake byintact plants in darkness than in light. Collectively, theseobservations are interpreted as evidence that the diurnal changesin NO3 uptake are due to decreased phloem transport ofphotosynthates in darkness. Accordingly, the magnitude of thesechanges was much dependent on starch accumulation in the leavesat the end of the photo-period. Shading the plants lowered thisaccumulation, and resulted in an amplification of the diurnalchanges in NO3 uptake. These results are discussed inconnection with the hypothesis that the carbon-dependent plasticityof the night/day ratio of NO3 uptake is an importantfeature of the co-ordination of the acquisition of N and C bythe plant. Key words: Glycine max, light/dark cycle, NO3 uptake, C and N acquisition  相似文献   

11.
Permeability coefficients (PS values) for CO2 of the plasmamembrane (PM) of the unicellular green algae Eremosphaera viridis,Dunaliella parva, and Dunaliella acidophila, and of mesophyllprotoplasts isolated from Valerianella locusta were determinedfrom 14CO2 uptake experiments using the rapid separation ofcells by the silicone oil layer centrifugation technique. Theexperimental PS values were compared with calculated numbersobtained by interpolation of Collander plots, which are basedon lipid solubility and molecular size, for D. parva cells,mesophyll protoplasts isolated from Spinacia oleracea, mesophyllcells and guard cells of Valerianella, and guard cell protoplastsisolated from Vicia faba. The conductivity of algal plasma membranes for CO2 varies between0.1 and 9 ? 10–6 m s–1, whereas for the plasmalemmaof cells and protoplasts isolated from leaves of higher plantsvalues between 0.3 and 11 ? 10–6 m s–1 were measured.By assuming that these measurements are representative for plantsand algae in general, it is concluded that the CO2 conductivityof algal PM is of the same order of magnitude as that of thehigher plant cell PM. Ps values of plasma membranes for CO2are lower than those for SO2, but are in the same order of magnitudeas those measured for H2O. On the basis of these results itis concluded that theoretical values of about 3000 ? 10–6m s–1 believed to be representative for higher plant cells(Nobel, 1983) and which are frequently used for computer-basedmodels of photosynthesis, lack experimental confirmation andrepresent considerable overestimations. However, with severalsystems, including higher plant cells, the conductance of thePM for CO2 was significantly higher in light than in darkness.This suggests that in light, additional mechanisms for CO2 uptakesuch as facilitated diffusion or active uptake may operate inparallel with diffusional uptake. Key words: Conductivity, CO2, permeability coefficient, photosynthesis, plasmalemma  相似文献   

12.
Gas exchange measurements were undertaken on 2-year-old plantsof Clusia rosea. The plants were shown to have the ability toswitch from C3-photosynthesis to CAM and vice versa regardlessof leaf age and, under some conditions, CO2 was taken up continuously,throughout the day and night. The light response was saturatedby 120 µmol m–2 s–1 typical of a shade plant. Gas exchange patterns in response to light, water and VPD wereexamined. All combinations of daytime and night-time CO2 uptakewere observed, with rates of CO2 uptake ranging from 2 to 11µmol m–2 s–1 depending upon water status andlight. Categorization of this plant asC3, CAM or an intermediateis impossible. Differing VPD affected the magnitude of changesfrom CAM to C3-photosynthesis (0 to 0.5 and 0 to 6.0 µmolm–2 s–1 CO2, respectively) when plants were watered.Under well-watered conditions, but not under water stress, highPPFD elicited changes from CAM to C3 gas exchange. This is unusualnot only for a shade plant but also for a plant with CAM. Itis of ecological importance for C. rosea, which may spend theearly years of its life as an epiphyte or in the forest understorey,to be able to maximize photosynthesis with minimal water loss. Key words: Clusia rosea, CAM, C3, stress  相似文献   

13.
Marques, I. A., Oberholzer, M. J. and Erismann, K. H. 1985.Metabolism of glycollate by Lemna minor L. grown on nitrateor ammonium as nitrogen source.—J. exp. Bot. 36: 1685–1697. Duckweed, Lemna minor L., grown on inorganic nutrient solutionscontaining either NH4+ or NO3 as nitrogen source wasallowed to assimilate [1-14C]- or [2-14C]glycollate during a20 min period in darkness or in light. The incorporation ofradioactivity into water-soluble metabolites, the insolublefraction, and into the CO2 released was measured. In additionthe extractable activity of phosphoenolpyruvate carboxylasewas determined. During the metabolism of [2-14C]glycollate in darkness, as wellas in the light, NH4+ grown plants evolved more 14CO2 than NO3grown plants. Formate was labelled only from [2-14C]glycollateand in NH4+ grown plants it was significantly less labelledin light than in darkness. In NO3 grown plants formateshowed similar radioactivity after dark and light labelling.The radioactivity in glycine was little influenced by the nitrogensource. Amounts of radioactivity in serine implied that thefurther metabolism of serine was reduced in darkness comparedwith its metabolism in the light under both nitrogen regimes.In illuminated NH4+ plants, serine was labelled through a pathwaystarting from phosphoglycerate. After [1-14C]glycollate feedingNH4+ grown plants contained markedly more radioactive aspartateand malate than NO3 plants indicating a stimulated phosphoenolpyruvatecarboxylation in plants grown on NH4+. Key words: Photorespiration, glycollate, nitrogen, Lemna  相似文献   

14.
Single, seed-grown plants of ryegrass (Lolium perenne L. cv.Melle) were grown for 49 d from the early seedling stage ingrowth cabinets at a day/night temperature of 20/15 C, witha 12 h photoperiod, and a CO2 concentration of either 340 or680µI 1–1 CO2. Following complete acclimation tothe environmental regimes, leaf and whole plant CO2 effluxesand influxes were measured using infra-red gas analysis techniques.Elevated CO2 increased rates of photosynthesis of young, fullyexpanded leaves by 35–46% and of whole plants by morethan 50%. For both leaves and whole plants acclimation to 680µI–1 CO2 reduced rates of photosynthesis in bothCO2 regimes, compared with plants acclimated to 340µll–1. There was no significant effect of CO2 regime onrespiration rates of either leaves or whole plants, althoughleaves developed in elevated CO2 exhibited generally lower ratesthan those developed in 340µI I–1 CO2. Initially the seedling plants in elevated CO2 grew faster thantheir counterparts in 340µI I–1 CO2, but this effectquickly petered out and final plant weights differed by onlyc. 10%. Since the total area of expanded and unexpanded laminaewas unaffected by CO2 regime, specific leaf area was persistently13–40% lower in elevated CO2 while, similarly, root/shootratio was also reduced throughout the experiment. Elevated CO2reduced tissue nitrogen contents of expanded leaves, but hadno effect on the nitrogen contents of unexpanded leaves, sheathsor roots. The lack of a pronounced effect of elevated CO2 on plant growthwas primarily due to the fact that CO2 concentration did notinfluence tiller (branch) numbers. In the absence of an effecton tiller numbers, any possible weight increment was restrictedto the c. 2.5 leaves of each tiller. The reason for the lackof an effect on tillering is not known. Key words: Lolium perenne, ryegrass, elevated CO2, photosynthesis, respiration, growth, development  相似文献   

15.
The regulation of senescence by oxygen-concentration, lightirradiance and H2O2 has been studied in leaf segments of Avenasativa L. cv. Suregrain. The development of the components of the senescence process,for example chlorophyll breakdown, proteolysis (as soluble aminoacids), hydroperoxides (as malondi-aldehyde) and permeability(as conductivity) is accelerated in light as the O2-tensionincreases. In darkness, 0.3% O2 accelerates increases in hydroperoxides,permeability and proteolysis and delays the chlorophyll break-down,but 0.0005% O2 delays all the components studied. In every casethe hydroperoxide content, permeability and proteolysis areclosely related. Any treatment inducing an increase in membranepermeability causes chlorophyll bleaching (photo-oxidation)if leaf segments are then treated with light in an atmospherecontaining oxygen. Light has a modulating effect on the senescenceprocess. An irradiance lower or higher than 40 W m–2 hasan accelerating effect on the senescence process. (Received September 7, 1985; Accepted July 30, 1985)  相似文献   

16.
A comparative study was made of the inhibition of ribulose-1,5-bisphosphatecarboxylase-oxygenase (Rubisco) amongst six cultivars of Glycinemax L. Merr., associated with synthesis of 2-carboxyarabinitol1-phosphate (CA1P) during darkness. Significantly lower meanvalues of dark inhibition of Rubisco were observed in soybeancv. Davis than in cvs Bragg, Cobb, Hardee, Gordon, and Kirby.The CA1P synthesis/degradation cycle during dark/light transitionsremained operational in cv. Bragg plants grown at low irradiance(40 µmol photons m–2 s–1). However, CA1P synthesisand degradation rates were slower in the dark (t0.5 = 240 versus25 min), and light (t0.5 = 20 versus 3.8 min) respectively,as compared to plants grown at higher irradiance (550 µmolphotons m–2 s–1). In addition, the activation stateof Rubisco in low-light-grown plants showed only a small declineafter a transition to darkness. We conclude that (a) cultivar-dependentvariation occurs amongst soybeans with respect to CAlP regulationof Rubisco, and (b) soybeans acclimated to low irradiance maydepend more on CA1P synthesis/degradation to regulate Rubisco,and less on changes in the enzyme activation state. Key words: Activation state, Glycine max, photosynthesis, Rubisco, 2-carboxyarabinitol 1-phosphate  相似文献   

17.
By manipulation of various growth regulators and physical conditions,plants have been regenerated from excised roots, stem segments,cotyledons, leaves, and callus cultures of red cabbage (Brassicaoleracea var. capitata) grown under in vitro conditions. Shootbuds were induced on isolated root segments (1 cm long) culturedon Murashige and Skoog's medium and the frequency of bud formationwas greatly enhanced by the addition of kinetin (0.5 part 10–6).Callus obtained from the seeds, cotyledons, and hypocotyl segmentscultured on a medium fortified with 2,4-D (1 part 10–6),kinetin (0.1 part 10–6), and coconut milk (10%, v/v) hasbeen repeatedly subcultured. The callus is slow growing, andon transference to a kinetin (2 parts 10–6) and IAA (2parts 10–6) medium underwent morphogenesis to give riseto plants. The significance of the propagation of red cabbageby in vitro culture is pointed out.  相似文献   

18.
According to the Dijkshoorn-Ben Zioni model, NO3 uptakein the roots is stimulated by NO3 assimilation in theshoots, through downward phloem transport of malate synthesizedin response to reduction of NO2 to NH3. In this paper,one hypothesis resulting from this model was tested, i.e. thatthe diurnal changes in NO3 uptake are due to the lightdependence of NO3 reduction in the leaves. This dependencewas studied in detached leaves transferred to deionized wateror supplied via the transpiration stream with similar amountsof 15NO3 in light or darkness. In the dark, the reductionof previously stored NO3 or xylem-borne 15NO3was generally about 40–50% of that measured in the light.Glucose supply to the detached leaves stimulated NO3reduction in the dark, but not enough to increase it up to thesame rate as in the light. Nitrite reduction in detached leaveswas much less affected by darkness, and could be maintainedat a high level by exogenous supply of substrate. Advantagewas taken from this last observation to sustain NO2reductionin attached darkened shoots at the same rate as in the light,by ensuring an appropriate delivery of NO2 from the xylem.Although this was assumed to restore the light level of theassociated synthesis of malate, it led to a marked inhibitionof NO3 uptake. In addition, the direct supply of malateto the shoots or to the roots failed to prevent the decreaseof NO3 uptake in darkness. Thus, our conclusion is thatthe mechanisms evoked in the Dijkshoorn-Ben Zioni model do notplay an important role in the diurnal variations of NO3uptake in soybean plants. Key words: Glycine max, light/dark cycle, malate synthesis, NO3 reduction, NO3 uptake  相似文献   

19.
Net photosynthesis rate (Pn), stomatal conductance to CO2 andresidual conductance to CO2 were measured in the last six leaves(the sixth or flag leaf and the preceding five leaves) of Triticumaestivum L. cv. Kolibri plants grown in Mediterranean conditions.Recently fully expanded leaves of well-watered plants were alwaysused. Measurements were made at saturating photosynthetic photonflux density, and at ambient CO2 and O2 levels. The specificleaf area, total organic nitrogen content, some anatomical characteristics,and other parameters, were measured on the same leaves usedfor gas exchange experiments. A progressive xeromorphic adaptation in the leaf structure wasobserved with increasing leaf insertion levels. Furthermore,mesophyll cell volume per unit leaf area (Vmes/A) decreasedby 52·6% from the first leaf to the flag leaf. Mesophyllcell area per unit leaf area also decreased, but only by 24·5%.However, nitrogen content per unit mesophyll cell volume increasedby 50·6% from the first leaf to the flag leaf. This increasecould be associated to an observed higher number of chloroplastcross-sections per mm2 of mesophyll cell cross-sectional areain the flag leaf: values of 23000 in the first leaf and 48000in the flag leaf were obtained. Pn per unit leaf area remainedfairly constant at the different insertion levels: values of33·83±0·93 mg dm–2 h–1 and32·32±1·61 mg dm–2 h–1 wereobtained for the first leaf and the flag leaf, respectively.Residual conductance, however, decreased by 18·2% fromthe first leaf to the flag leaf. Stomatal conductance increasedby 41·7%. The steadiness in Pn per unit leaf area across the leaf insertionlevels could be mainly accounted for by an opposing effect betweena decrease in Vmes/A and a more closely packed arrangement ofphotosynthetic apparatus. Adaptative significance of structuralchanges with increasing leaf insertion levels and the steadinessin Pn per unit leaf area was studied. Key words: Photosynthesis, structure, wheat  相似文献   

20.
The relationships between photosynthesis, dry matter accumulationand translocation have been studied during the development ofthe first true leaf of cucumber. The leaf was grown in an irradianceof 50W m–2 photosynthetically active radiation for 10h–1 at 20 C and 2 g m–3 CO2. The maximum rate of net photosynthesis, on a leaf area basis,occured at full expansion. Photochemical efficiency, based onincident radiation, also increased up to this stage and wasrelated to the concentration of chlorophyll in the leaf. Darkrespiration and the light compensation point fell over the wholeperiod of leaf expansion. A carbon budget analysis showed that the rate of carbon accumulationin the leaf reached a peak at 70 percent expansion. The leafchanged from a net importer to a net exporter of carbon whenit was about 30 percent expanded. The rate of export increasedwith leaf expansion (and with net photosynthesis) and was twiceas high in the day an in the night at full expansion. At fullleaf expansion there was a reduction in the amount of starchlost overnight, and the carbon exported amounted to 80 per centof the daily net carbon fixed. Cucumber, Cumic satinu L., leaf development, photosynthesis, translocation, carbon budget, mineral content  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号