首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural genomics projects are providing large quantities of new 3D structural data for proteins. To monitor the quality of these data, we have developed the protein structure validation software suite (PSVS), for assessment of protein structures generated by NMR or X-ray crystallographic methods. PSVS is broadly applicable for structure quality assessment in structural biology projects. The software integrates under a single interface analyses from several widely-used structure quality evaluation tools, including PROCHECK (Laskowski et al., J Appl Crystallog 1993;26:283-291), MolProbity (Lovell et al., Proteins 2003;50:437-450), Verify3D (Luthy et al., Nature 1992;356:83-85), ProsaII (Sippl, Proteins 1993;17: 355-362), the PDB validation software, and various structure-validation tools developed in our own laboratory. PSVS provides standard constraint analyses, statistics on goodness-of-fit between structures and experimental data, and knowledge-based structure quality scores in standardized format suitable for database integration. The analysis provides both global and site-specific measures of protein structure quality. Global quality measures are reported as Z scores, based on calibration with a set of high-resolution X-ray crystal structures. PSVS is particularly useful in assessing protein structures determined by NMR methods, but is also valuable for assessing X-ray crystal structures or homology models. Using these tools, we assessed protein structures generated by the Northeast Structural Genomics Consortium and other international structural genomics projects, over a 5-year period. Protein structures produced from structural genomics projects exhibit quality score distributions similar to those of structures produced in traditional structural biology projects during the same time period. However, while some NMR structures have structure quality scores similar to those seen in higher-resolution X-ray crystal structures, the majority of NMR structures have lower scores. Potential reasons for this "structure quality score gap" between NMR and X-ray crystal structures are discussed.  相似文献   

2.
The ability to determine the structure of a protein in solution is a critical tool for structural biology, as proteins in their native state are found in aqueous environments. Using a physical chemistry based prediction protocol, we demonstrate the ability to reproduce protein loop geometries in experimentally derived solution structures. Predictions were run on loops drawn from (1)NMR entries in the Protein Databank (PDB), and from (2) the RECOORD database in which NMR entries from the PDB have been standardized and re-refined in explicit solvent. The predicted structures are validated by comparison with experimental distance restraints, a test of structural quality as defined by the WHAT IF structure validation program, root mean square deviation (RMSD) of the predicted loops to the original structural models, and comparison of precision of the original and predicted ensembles. Results show that for the RECOORD ensembles, the predicted loops are consistent with an average of 95%, 91%, and 87% of experimental restraints for the short, medium and long loops respectively. Prediction accuracy is strongly affected by the quality of the original models, with increases in the percentage of experimental restraints violated of 2% for the short loops, and 9% for both the medium and long loops in the PDB derived ensembles. We anticipate the application of our protocol to theoretical modeling of protein structures, such as fold recognition methods; as well as to experimental determination of protein structures, or segments, for which only sparse NMR restraint data is available.  相似文献   

3.
Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However, comprehensive association of gene products with functions also requires systematic determination of more complex protein structures and other biomolecules participating in cellular processes such as nucleic acids, and characterization of biomolecular interactions and dynamics relevant to function. Such NMR investigations are becoming more feasible, not only due to recent advances in NMR methodology, but also because structural genomics is providing valuable structural information and new experimental and computational tools. The measurement of residual dipolar couplings in partially oriented systems and other new NMR methods will play an important role in this synergistic relationship between NMR and structural genomics. Both an expansion in the domain of NMR application, and important contributions to future structural genomics efforts can be anticipated.  相似文献   

4.
结构基因组学研究与核磁共振   总被引:4,自引:0,他引:4  
各种生物的基因组DNA测序计划的完成,将结构生物学带入了结构基因组学时代.结构基因组学是对所有基因组产物结构的系统性测定,它运用高通量的选择、表达、纯化以及结构测定和计算分析手段,为基因组的每个蛋白质产物提供实验测定的结构或较好的理论模型,这将加速生命科学各个领域的研究.生物信息学、基因工程、结构测定技术等的发展为结构基因组学研究提供了保证.近年来核磁共振在技术方法上的进展,使其成为结构基因组学高通量结构分析中的一个关键方法.  相似文献   

5.
Membrane proteins are challenging to study and restraints for structure determination are typically sparse or of low resolution because the membrane environment that surrounds them leads to a variety of experimental challenges. When membrane protein structures are determined by different techniques in different environments, a natural question is “which structure is most biologically relevant?” Towards answering this question, we compiled a dataset of membrane proteins with known structures determined by both solution NMR and X‐ray crystallography. By investigating differences between the structures, we found that RMSDs between crystal and NMR structures are below 5 Å in the membrane region, NMR ensembles have a higher convergence in the membrane region, crystal structures typically have a straighter transmembrane region, have higher stereo‐chemical correctness, and are more tightly packed. After quantifying these differences, we used high‐resolution refinement of the NMR structures to mitigate them, which paves the way for identifying and improving the structural quality of membrane proteins.  相似文献   

6.
Structural genomics projects require strategies for rapidly recognizing protein sequences appropriate for routine structure determination. For large proteins, this strategy includes the dissection of proteins into structural domains that form stable native structures. However, protein dissection essentially remains an empirical and often a tedious process. Here, we describe a simple strategy for rapidly identifying structural domains and assessing their structures. This approach combines the computational prediction of sequence regions corresponding to putative domains with an experimental assessment of their structures and stabilities by NMR and biochemical methods. We tested this approach with nine putative domains predicted from a set of 108 Thermus thermophilus HB8 sequences using PASS, a domain prediction program we previously reported. To facilitate the experimental assessment of the domain structures, we developed a generic 6-hour His-tag-based purification protocol, which enables the sample quality evaluation of a putative structural domain in a single day. As a result, we observed that half of the predicted structural domains were indeed natively folded, as judged by their HSQC spectra. Furthermore, two of the natively folded domains were novel, without related sequences classified in the Pfam and SMART databases, which is a significant result with regard to the ability of structural genomics projects to uniformly cover the protein fold space.  相似文献   

7.
For biomolecular NMR structures typically only a poor correspondence is observed between statistics derived from the experimental input data and structural quality indicators obtained from the structure ensembles. Here, we investigate the relationship between the amount of available NMR data and structure quality. By generating datasets with a predetermined information content and evaluating the quality of the resulting structure ensembles we show that there is, in contrast to previous findings, a linear relation between the information contained in experimental data and structural quality. From this relation, a new quality parameter is derived that provides direct insight, on a per-residue basis, into the extent to which structural quality is governed by the experimental input data.  相似文献   

8.
Manfred J. Sippl 《Proteins》1993,17(4):355-362
A major problem in the determination of the three-dimensional structure of proteins concerns the quality of the structural models obtained from the interpretation of experimental data. New developments in X-ray crystallography and nuclear magnetic resonance spectroscopy have acceleratedd the process of structure determination and the biological community is confronted with a steadily increasing number of experimentally determined protein folds. However, in the recent past several experimentally determined protein structures have been proven to contain major errors, indicating that in some cases the interpretation of experimental data is difficult and may yield incorrect models. Such problems can be avoided when computational methods are employed which complement experimental structure determinations. A prerequisite of such computational tools is that they are independent of the parameters obtained from a particular experiment. In addition such techniques are able to support and accelerate experimental structure determinations. Here we present techniques based on knowledge based mean fields which can be used to judge the quality of protein folds. The methods can be used to identify misfolded structures as well as faulty parts of structural models. The techniques are even applicable in cases where only the Cα trace of a protein conformation is available. The capabilities of the technique are demonstrated using correct and incorrect protein folds. © 1993 Wiley-Liss, Inc.  相似文献   

9.
The solution structure of Fe(II) cytochrome c551 from Pseudomonas aeruginosa based on 2D 1H NMR data is reported. Two sets of structure calculations were completed with a combination of simulated annealing and distance geometry calculations: one set of 20 structures included the heme-peptide covalent linkages, and one set of 10 structures excluded them. The main-chain atoms were well constrained within the two structural ensembles (1.30 and 1.35 A average RMSD, respectively) except for two regions spanning residues 30-40 and 60-70. The results were essentially the same when global fold comparisons were made between the ensembles with an average RMSD of 1.33 A. In total, 556 constraints were used, including 479 NOEs, 53 volume constraints, and 24 other distances. This report represents the first solution structure determination of a heme protein by 2D 1H NMR and should provide a basis for the application of these techniques to other proteins containing large prosthetic groups or cofactors.  相似文献   

10.
11.
Liu J  Hegyi H  Acton TB  Montelione GT  Rost B 《Proteins》2004,56(2):188-200
A central goal of structural genomics is to experimentally determine representative structures for all protein families. At least 14 structural genomics pilot projects are currently investigating the feasibility of high-throughput structure determination; the National Institutes of Health funded nine of these in the United States. Initiatives differ in the particular subset of "all families" on which they focus. At the NorthEast Structural Genomics consortium (NESG), we target eukaryotic protein domain families. The automatic target selection procedure has three aims: 1) identify all protein domain families from currently five entirely sequenced eukaryotic target organisms based on their sequence homology, 2) discard those families that can be modeled on the basis of structural information already present in the PDB, and 3) target representatives of the remaining families for structure determination. To guarantee that all members of one family share a common foldlike region, we had to begin by dissecting proteins into structural domain-like regions before clustering. Our hierarchical approach, CHOP, utilizing homology to PrISM, Pfam-A, and SWISS-PROT chopped the 103,796 eukaryotic proteins/ORFs into 247,222 fragments. Of these fragments, 122,999 appeared suitable targets that were grouped into >27,000 singletons and >18,000 multifragment clusters. Thus, our results suggested that it might be necessary to determine >40,000 structures to minimally cover the subset of five eukaryotic proteomes.  相似文献   

12.
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all sidechains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the sidechains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins, which suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods.  相似文献   

13.
The period 2000–2015 brought the advent of high-throughput approaches to protein structure determination. With the overall funding on the order of $2 billion (in 2010 dollars), the structural genomics (SG) consortia established worldwide have developed pipelines for target selection, protein production, sample preparation, crystallization, and structure determination by X-ray crystallography and NMR. These efforts resulted in the determination of over 13,500 protein structures, mostly from unique protein families, and increased the structural coverage of the expanding protein universe. SG programs contributed over 4400 publications to the scientific literature. The NIH-funded Protein Structure Initiatives alone have produced over 2000 scientific publications, which to date have attracted more than 93,000 citations. Software and database developments that were necessary to handle high-throughput structure determination workflows have led to structures of better quality and improved integrity of the associated data. Organized and accessible data have a positive impact on the reproducibility of scientific experiments. Most of the experimental data generated by the SG centers are freely available to the community and has been utilized by scientists in various fields of research. SG projects have created, improved, streamlined, and validated many protocols for protein production and crystallization, data collection, and functional analysis, significantly benefiting biological and biomedical research.  相似文献   

14.
Structural genomics (also known as structural proteomics) aims to generate accurate three-dimensional models for all folded, globular proteins and domains in the protein universe to understand the relationship between protein sequence, structure and function. NMR spectroscopy of small (<20 kDa) proteins has been used successfully within several large-scale structural genomics projects for more than six years now. Recent advances coming from traditional NMR structural biology laboratories as well as large scale centers and consortia using NMR for structural genomics promise to facilitate NMR analysis making it even a more efficient and increasingly automated procedure.  相似文献   

15.
Large-scale initiatives for obtaining spatial protein structures by experimental or computational means have accentuated the need for the critical assessment of protein structure determination and prediction methods. These include blind test projects such as the critical assessment of protein structure prediction (CASP) and the critical assessment of protein structure determination by nuclear magnetic resonance (CASD-NMR). An important aim is to establish structure validation criteria that can reliably assess the accuracy of a new protein structure. Various quality measures derived from the coordinates have been proposed. A universal structural quality assessment method should combine multiple individual scores in a meaningful way, which is challenging because of their different measurement units. Here, we present a method based on a generalized linear model (GLM) that combines diverse protein structure quality scores into a single quantity with intuitive meaning, namely the predicted coordinate root-mean-square deviation (RMSD) value between the present structure and the (unavailable) "true" structure (GLM-RMSD). For two sets of structural models from the CASD-NMR and CASP projects, this GLM-RMSD value was compared with the actual accuracy given by the RMSD value to the corresponding, experimentally determined reference structure from the Protein Data Bank (PDB). The correlation coefficients between actual (model vs. reference from PDB) and predicted (model vs. "true") heavy-atom RMSDs were 0.69 and 0.76, for the two datasets from CASD-NMR and CASP, respectively, which is considerably higher than those for the individual scores (-0.24 to 0.68). The GLM-RMSD can thus predict the accuracy of protein structures more reliably than individual coordinate-based quality scores.  相似文献   

16.
Structural genomics (or proteomics) activities are critically dependent on the availability of high-throughput structure determination methodology. Development of such methodology has been a particular challenge for NMR based structure determination because of the demands for isotopic labeling of proteins and the requirements for very long data acquisition times. We present here a methodology that gains efficiency from a focus on determination of backbone structures of proteins as opposed to full structures with all sidechains in place. This focus is appropriate given the presumption that many protein structures in the future will be built using computational methods that start from representative fold family structures and replace as many as 70% of the sidechains in the course of structure determination. The methodology we present is based primarily on residual dipolar couplings (RDCs), readily accessible NMR observables that constrain the orientation of backbone fragments irrespective of separation in space. A new software tool is described for the assembly of backbone fragments under RDC constraints and an application to a structural genomics target is presented. The target is an 8.7 kDa protein from Pyrococcus furiosus, PF1061, that was previously not well annotated, and had a nearest structurally characterized neighbor with only 33% sequence identity. The structure produced shows structural similarity to this sequence homologue, but also shows similarity to other proteins, which suggests a functional role in sulfur transfer. Given the backbone structure and a possible functional link this should be an ideal target for development of modeling methods. This revised version was published online in March 2005 with corrections to the references.  相似文献   

17.
Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (ap) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues.  相似文献   

18.
Achieving the goals of structural genomics initiatives depends on the outcomes of two groups of factors: the number and distribution of experimentally determined protein structures, and our ability to assign novel proteins to known structures (fold recognition) and use them to build models (modeling). The quality of the tools used for fold recognition defines the scope of experimental effort - the more distant the templates that can be recognized, the smaller the number of proteins that have to be solved. Recent improvements in fold recognition may have suggested that the goals of structural genomics initiatives are getting closer. However, problems that surfaced during the first few years of active work have put many of the early estimates in doubt and new ones are still slow in coming.  相似文献   

19.
Current interests in structural genomics, and the associated need for high through-put structure determination methods, offer an opportunity to examine new nuclear magnetic resonance (NMR) methodology and the impact this methodology can have on structure determination of proteins. The time required for structure determination by traditional NMR methods is currently long, but improved hardware, automation of analysis, and new sources of data such as residual dipolar couplings promise to change this. Greatly improved efficiency, coupled with an ability to characterize proteins that may not produce crystals suitable for investigation by X-ray diffraction, suggests that NMR will play an important role in structural genomics programs.  相似文献   

20.
Practical lessons from protein structure prediction   总被引:9,自引:0,他引:9       下载免费PDF全文
Despite recent efforts to develop automated protein structure determination protocols, structural genomics projects are slow in generating fold assignments for complete proteomes, and spatial structures remain unknown for many protein families. Alternative cheap and fast methods to assign folds using prediction algorithms continue to provide valuable structural information for many proteins. The development of high-quality prediction methods has been boosted in the last years by objective community-wide assessment experiments. This paper gives an overview of the currently available practical approaches to protein structure prediction capable of generating accurate fold assignment. Recent advances in assessment of the prediction quality are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号