首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lipid peroxidation and activity of antioxidant enzymes in diabetic rats   总被引:10,自引:0,他引:10  
We hypothesized that oxygen free radicals (OFRs) may be involved in pathogenesis of diabetic complications. We therefore investigated the levels of lipid peroxidation by measuring thiobarbituric acid reactive substances (TBARS) and activity of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT)] in tissues and blood of streptozotocin (STZ)-induced diabetic rats. The animals were divided into two groups: control and diabetic. After 10 weeks (wks) of diabetes the animals were sacrificed and liver, heart, pancreas, kidney and blood were collected for measurement of various biochemical parameters. Diabetes was associated with a significant increase in TBARS in pancreas, heart and blood. The activity of CAT increased in liver, heart and blood but decreased in kidney. GSH-Px activity increased in pancreas and kidney while SOD activity increased in liver, heart and pancreas. Our findings suggest that oxidative stress occurs in diabetic state and that oxidative damage to tissues may be a contributory factor in complications associated with diabetes.  相似文献   

2.
Succinic acid monoethyl ester (EMS) is recently proposed as an insulinotropic agent for the treatment of non-insulin dependent diabetes mellitus. Oxidative stress has been suggested to be a contributory factor in the development and complications of diabetes. In the present study the effect of EMS and Metformin on plasma glucose, insulin, serum and tissue lipid profile, lipoproteins and lipid peroxidation in streptozotocin–nicotinamide induced type 2 diabetic model was investigated. The carboxylic nutrient EMS was administered intraperitonially (8 μmol/g body weight) to streptozotocin diabetic rats for 30 days. The levels of thiobarbituric acid reactive substances (TBARS) and hydroperoxides in liver and kidney and serum and tissue lipids [cholesterol, triglycerides, phospholipids and free fatty acids] and very low density lipoprotein-cholesterol (VLDL-C) and low density lipoprotein-cholesterol (LDL-C), were significantly increased in diabetic rats, whereas the levels of high-density lipoprotein-cholesterol (HDL-C) and antiatherogenic index (AAI) (ratio of HDL to total cholesterol) were significantly decreased. The effect of EMS was compared with metformin, a reference drug. Treatment with EMS and metformin resulted in a significant reduction of plasma glucose with increase plasma insulin in diabetic rats. EMS also resulted in a significant decrease in serum and tissue lipids and lipid peroxidation products. These biochemical observations were supplemented by histopathological examination of liver and kidney section. Our results suggest the possible antihyperlipidemic and antiperoxidative effect of EMS apart from its antidiabetic effect.  相似文献   

3.
Chronic hyperglycemia in diabetes determines the overproduction of free radicals, and evidence is increasing that these contribute to the development of diabetic complications. It has recently been reported that dehydroepiandrosterone possesses antioxidant properties; this study evaluates whether, administered daily for three weeks per os, it may provide antioxidant protection in tissues of rats with streptozotocin-induced diabetes. Lipid peroxidation was evaluated on liver, brain and kidney homogenates from diabetic animals, measuring both steady-state concentrations of thiobarbituric acid reactive substances and fluorescent chromolipids. Hyperglycemic rats had higher thiobarbituric acid reactive substances formation and fluorescent chromolipids levels than controls. Dehydroepiandrosterone-treatment (4 mg/day for 3 weeks) protected tissues against lipid peroxidation: liver, kidney and brain homogenates from dehydroepiandrosterone-treated animals showed a significant decrease of both thiobarbituric acid reactive substances and fluorescent chromolipids formation. The effect of dehydroepiandrosterone on the cellular antioxidant defenses was also investigated, as impaired antioxidant enzyme activities were considered proof of oxygen-dependent toxicity. In kidney and liver homogenates, dehydroepiandrosterone treatment restored to near-control values the cytosolic level of reduced glutathione, as well as the enzymatic activities of superoxide-dismutase, glutathione-peroxidase, catalase. In the brain, only an increase of catalase activity was evident (p < .05), which reverted with dehydroepiandrosterone treatment. The results demonstrate that DHEA treatment clearly reduces oxidative stress products in the tissues of streptozotocin-treated rats.  相似文献   

4.
Increasing evidence shows that the overproduction of reactive oxygen species, induced by diabetic hyperglycemia, contributes to the development of several cardiopathologies. The susceptibility of diabetic hearts to oxidative stress, induced in vitro by ADP-Fe2+ in mitochondria, was studied in 12-month-old Goto-Kakizaki rats, a model of non-insulin dependent diabetes mellitus, and normal (non-diabetic) Wistar rats. In terms of lipid peroxidation the oxidative damage was evaluated on heart mitochondria by measuring both the O2 consumption and the concentrations of thiobarbituric acid reactive substances. Diabetic rats display a more intense formation of thiobarbituric acid reactive substances and a higher O2 consumption than non-diabetic rats. The oxidative damage, assessed by electron microscopy, was followed by an extensive effect on the volume of diabetic heart mitochondria, as compared with control heart mitochondria. An increase in the susceptibility of diabetic heart mitochondria to oxidative stress can be explained by reduced levels of endogenous antioxidants, so we proceeded in determinating -tocopherol, GSH and coenzyme Q content. Although no difference of -tocopherol levels was found in diabetic rats as compared with control rat mitochondria, a significant reduction in GSH (21.5% reduction in diabetic rats) and coenzyme Q levels of diabetic rats was observed. The data suggest that a significant decrease of coenzyme Q9, a potent antioxidant involved in the elimination of mitochondria-generated reactive oxygen species, may be responsible for an increased susceptibility of diabetic heart mitochondria to oxidative damage.  相似文献   

5.
Combination therapy had become very popular currently for the diabetes mellitus and its complications, because of long term unreasonable drug use and adverse reaction to human body. In this study, a polysaccharide (ASP) from the roots of Acanthopanax senticosus was evaluated as an adjuvant with metformin for antidiabetic therapy in alloxan-induced diabetic rats. The result identified ASP plus metformin had a more beneficial promotion for relieving the symptoms of diabetes and reversing liver and kidney damage to normal level than only metfomin administration to diabetic rats. The blood glucose, blood lipid (TC and TG), thiobarbituric acid reactive substances (TBARS), AST, ALT, ALP, total bilirubin, creatinine and urea levels in diabetic rats were decreased by combination of ASP and metformin. Furthermore, the body weight, liver glycogen formation, antioxidant substance (GSH) and antioxidant enzyme (SOD and GPX) levels increased evidently in diabetic mice treated with both ASP and metformin. In particular, sometimes ASP plus metformin could significantly reverse the pathophysiologic parameters of diabetic rats to normal level than only metformin administration. Therefore ASP could be developed to a new adjuvant combined with metformin for diabetes mellitus therapy in the future.  相似文献   

6.
We studied the effects of administration of beta-resorcylidene aminoguanidine (RAG) to Wistar strain rats with experimental diabetes mellitus (DM) induced by streptozotocin. The effects studied included antioxidant levels in plasma and the liver, oxidative damage of lipids represented by the formation of substances reacting with thiobarbituric acid (TBARP) and selected biochemical indicators. The administration of RAG did not significantly affect antioxidant status of diabetic rats or hemoglobin glycation and plasma concentration of fructosamine. In diabetic rats, application of RAG decreased formation of TBARP in plasma but not in the liver. Moderate steatosis of liver and increased plasma levels of triacylglycerols in diabetic rats were significantly improved by application of RAG.  相似文献   

7.
This study evaluated the protective effects of gallic acid on brain lipid peroxidation products, antioxidant system, and lipids in streptozotocin-induced type II diabetes mellitus. Streptozotocin-induced diabetic rats showed a significant increase in the levels of blood glucose, brain lipid peroxidation products, and lipids and a significant decrease in the activities of brain enzymic antioxidants. Oral treatment with gallic acid (10 mg and 20 mg/kg) for 21 days significantly decreased the levels of blood glucose, brain lipid peroxidation products, and lipids and significantly increased the activities of brain enzymic antioxidants in diabetic rats. Histopathology of brain confirmed the protective effects of gallic acid. Furthermore, in vitro study revealed the free radical scavenging action of gallic acid. Thus, our study shows the beneficial effects of gallic acid on brain metabolism in streptozotocin-induced type II diabetic rats. A diet containing gallic acid may be beneficial to type II diabetic patients.  相似文献   

8.
Increased oxidative stress and reduced nitric oxide (NO) bioactivity are key features of diabetes mellitus that eventually result in cardiovascular abnormalities. We assessed whether N-acetylcysteine (NAC), an antioxidant and glutathione precursor, could prevent the hyperglycaemia induced increase in oxidative stress, restore NO availability and prevent depression of arterial blood pressure and heart rate in vivo in experimental diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were treated or not treated with NAC in drinking water for 8 weeks, initiated 1 week after induction of diabetes. At termination, plasma levels of free 15-F2t-isoprostane, a specific marker of oxygen free radical induced lipid peroxidation, was increased while the plasma total antioxidant concentration was decreased in untreated diabetic rats as compared to control rats (P<0.05). This was accompanied by a significant reduction of plasma levels of nitrate and nitrite, stable metabolites of NO, (P<0.05, D vs. C) and a reduced endothelial NO synthase protein expression in the heart and in aortic and mesenteric artery tissues. Systolic, diastolic and mean arterial blood pressures (SBP, DBP and MAP) and heart rate (HR) were reduced in diabetic rats (P<0.05 vs. C) and NAC normalised the changes that occurred in the diabetic rats. The protective effects may be attributable to restoration of NO bioavailability in the circulation.  相似文献   

9.
The state of an enzymatic component of the antioxidant system, intensity of lipid peroxidation (LPO) in the liver, and the level of blood plasma nitric oxide were investigated in rats subjected to chronic morphine intoxication. Initially male Wistar rats were treated with introperitoneal injections of 1% morphine hydrochloride twice a day. The daily dose of morphine was gradually increased from 10 mg/kg (1–2 days) to 20 mg/kg (3–4 days), and up to 40 mg/kg starting at the fifth day. Animals were subdivided into three groups receiving morphine injections for 7, 14 and 21 days. Control animals were treated with the same volume of 0.9% NaCl injected intraperitoneally. Chronic morphine treatment was accompanied by the marked inhibition of the peroxide-utilizing antioxidants in liver. This created favorable conditions for H2O2 toxicity and triggered LPO chain reactions. However, low level of thiobarbituric acid reactive products suggests involvement of some scavenger(s) of H2O2, which inhibits hydrogen-peroxide induced free radical processes. In vitro experiments suggest that morphine may be involved into reduction of H2O2 level, whereas administration of morphine to rats may also employ nitric oxide as the scavenger of reactive oxygen species.  相似文献   

10.

Peripheral neuropathy is the most prevalent chronic complication of diabetes mellitus. Good glycemic control can delay the appearance of neuropathic symptoms in diabetic patients but it is not sufficient to prevent or cure the disease. Therefore therapeutic approaches should focus on attenuation of pathogenetic mechanisms responsible for the nerve injury. Considering the role of polyol pathway in the etiology of diabetic neuropathy, we evaluated the effect of a novel efficient and selective aldose reductase inhibitor, 3-mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (cemtirestat), on symptoms of diabetic peripheral neuropathy in Zucker Diabetic Fatty (ZDF) rats. Since the age of 5 months, male ZDF rats were orally administered cemtirestat, 2.5 and 7.5 mg/kg/day, for two following months. Thermal hypoalgesia was evaluated by tail flick and hot plate tests. Tactile allodynia was determined by a von Frey flexible filament test. Two-month treatment of ZDF rats with cemtirestat (i) did not affect physical and glycemic status of the animals; (ii) partially inhibited sorbitol accumulation in red blood cells and the sciatic nerve; (iii) markedly decreased plasma levels of thiobarbituric acid reactive substances; (iv) normalized symptoms of peripheral neuropathy with high significance. The presented findings indicate that inhibition of aldose reductase by cemtirestat is not solely responsible for the recorded improvement of the behavioral responses. In future studies, potential effects of cemtirestat on consequences of diabetes that are not exclusively dependent on glucose metabolism via polyol pathway should be taken into consideration.

  相似文献   

11.
Oxidative damage has been suggested to be a contributory factor in the development and complications of diabetes. The antioxidant effect of an aqueous extract of Scoparia dulcis, an indigenous plant used in Ayurvedic medicine in India was studied in rats with streptozotocin-induced diabetes. Oral administration of Scoparia dulcis plant extract (SPEt) (200 mg/kg body weight) for 3 weeks resulted in a significant reduction in blood glucose and an increase in plasma insulin. The aqueous extract also resulted in decreased free radical formation in tissues (liver and kidney) studied. The decrease in thiobarbituric acid reactive substances (TBARS) and hydroperoxides (HPX) and increase in the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) and glutathione-S-transferase (GST) clearly show the antioxidant properties of SPEt in addition to its antidiabetic effect. The effect of SPEt at 200 mg/kg body weight was better than glibenclamide, a reference drug.  相似文献   

12.
The present study evaluates the combined effect of tetrahydrocurcumin and chlorogenic acid on oxidative stress in streptozotocin–nicotinamide-induced diabetic rats. Rats were rendered diabetic by a single intraperitoneal injection (i.p) of streptozotocin (45 mg/kg BW), 15 min after an i.p injection of nicotinamide (110 mg/kg BW). The levels of fasting plasma glucose and insulin were estimated. As an index of oxidative stress, the levels of enzymic antioxidants and lipid peroxidation products were analyzed in liver and kidney. Diabetic rats showed an increase in the levels of fasting plasma glucose, lipid peroxidative products such as thiobarbituric acid reactive substances and lipid hydroperoxides and a decrease in plasma insulin, and enzymic antioxidants viz., superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase. Combined administration of tetrahydrocurcumin (80 mg/kg BW) and chlorogenic acid (5 mg/kg BW) to diabetic rats for 45 days, reversed the biochemical changes to near normal. The above findings were supported by histological observations of the liver and kidney. Together the present study clearly reflects that combined dosage of tetrahydrocurcumin and chlorogenic acid augments enzymic antioxidants with a concomitant decrease in lipid peroxidation and protects against streptozotocin–nicotinamide-induced type 2 diabetes in experimental rats.  相似文献   

13.
A study was undertaken to evaluate the anti-lipid peroxidative activity of an aqueous extract of A. marmelos fruits (AMFEt) in streptozotocin diabetic rats in heart and pancreas. Oral administration of AMFEt for 30 days (125 and 250 mg kg(-1) body weight twice daily) produced a significant decrease in the elevated levels of peroxidation products, viz. thiobarbituric acid reactive substances and hydroperoxides in the tissues of diabetic rats. The depressed activities of superoxide dismutase, catalase and glutathione peroxidase and lowered glutathione content in the heart and pancreas of diabetic rats were found to increase on treatment with AMFEt. AMFEt at a dose of 250 mg kg(-1) was more effective than glibenclamide (300 microg kg(-1)) and both reversed all the values significantly. Thus AMFEt exhibits anti-oxidative activity in streptozotocin diabetic rats.  相似文献   

14.
Abstract

Objective

The aim of the present study was to evaluate the protective effect of kaempferol against oxidative stress in streptozotocin (STZ)-induced diabetic rats.

Methods

Diabetes was induced in male, adult albino rats of the Wistar strain, by intraperitoneal administration of STZ (40 mg/kg body weight (BW)). Kaempferol (100 mg/kg BW) or glibenclamide (600 µg/kg BW) was administered orally once daily for 45 days to normal and STZ-induced diabetic rats.

Results

The STZ-induced diabetic rats showed significantly increased levels of plasma glucose, thiobarbituric acid reactive substances, lipid hydroperoxides, and conjugated dienes in plasma, liver, kidney, and heart whereas they showed significantly decreased level of plasma insulin. The levels of non-enzymic antioxidants (vitamin C, vitamin E, reduced glutathione) in plasma, liver, kidney, and heart and the activities of enzymatic antioxidants (superoxide dismutase, catalase, glutathione peroxidase, and glutathione-S-transferase) in liver, kidney, and heart were significantly decreased in diabetic rats. Administration of kaempferol to diabetic rats was showed brought back in plasma glucose, insulin, lipid peroxidation products, enzymatic, and non-enzymatic antioxidants to near normal.

Conclusion

The present study indicates that kaempferol has a good antioxidant property, as evidenced by its increase of antioxidant status and decrease of lipid peroxidation markers, thus providing protection from the risks of diabetic complications.  相似文献   

15.
Diabetes mellitus is the most common serious metabolic disorder and it is considered to be one of the five leading causes of death in the world. Hyperglycemia-mediated oxidative stress plays a crucial role in diabetic complications. Hence, this study was undertaken to evaluate the protective effect of esculetin on the plasma glucose, insulin levels, tissue antioxidant defense system and lipid peroxidative status in streptozotocin-induced diabetic rats. Diabetic rats exhibited increased blood glucose with significant decrease in plasma insulin levels. Extent of oxidative stress was assessed by the elevation in the levels of lipid peroxidation markers such as thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (HP) and conjugated dienes (CD); reduction in the enzymic antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST); nonenzymic antioxidants Vitamin C, E and reduced glutathione (GSH) were observed in the liver and kidney tissues of diabetic control rats as compared to control rats. Oral supplementation of esculetin to diabetic rats for 45 days significantly brought back lipid peroxidation markers, enzymic and nonenzymic antioxidants to near normalcy. Moreover, the histological observations evidenced that esculetin effectively rescues the hepatocytes and kidney from hyperglycemia mediated oxidative damage without affecting its cellular function and structural integrity. These findings suggest that esculetin (40 mg/kg BW) treatment exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress and antioxidant competence in hepatic and renal tissues. Further, detailed studies are in progress to elucidate the molecular mechanism by which esculetin elicits its modulatory effects in insulin signaling pathway.  相似文献   

16.
This study intends to clarify the ability of different carbonyl-containing lens metabolites to form advanced glycation end products, which possess photosensitizer activity and to investigate whether these modified proteins could be implicated in lens photodamage. Calf lens protein was experimentally glycated with either methylglyoxal, glyoxal, ascorbic acid, or fructose to obtain models of aged and diabetic cataractous lenses. Being exposed to 200 J/cm 2 UVA radiation the model glycated proteins produced 2-3-fold more singlet oxygen compared to the unmodified protein and the superoxide radical formation was 30-80% higher than by the native protein. Ascorbylated proteins demonstrated the highest photosensitizer activity. Biological responses of glycation-related photosensitizers were studied on cultured lens epithelial cells irradiated with 40 J/cm 2 UVA. Tissue culture studies revealed a significant increase in thiobarbituric acid reactive substances in the culture medium of lens epithelial cells after irradiation and treatment with glycated proteins. Lens proteins had a protective effect against UVA induced cytotoxicity, however, this protective effect decreased with the increasing photosensitizer activity of experimentally glycated proteins. The documented glycation-related photosensitization could explain the accelerated pathogenic changes in human lens at advanced age and under diabetic conditions.  相似文献   

17.
This study intends to clarify the ability of different carbonyl-containing lens metabolites to form advanced glycation end products, which possess photosensitizer activity and to investigate whether these modified proteins could be implicated in lens photodamage. Calf lens protein was experimentally glycated with either methylglyoxal, glyoxal, ascorbic acid, or fructose to obtain models of aged and diabetic cataractous lenses. Being exposed to 200 J/cm 2 UVA radiation the model glycated proteins produced 2-3-fold more singlet oxygen compared to the unmodified protein and the superoxide radical formation was 30-80% higher than by the native protein. Ascorbylated proteins demonstrated the highest photosensitizer activity. Biological responses of glycation-related photosensitizers were studied on cultured lens epithelial cells irradiated with 40 J/cm 2 UVA. Tissue culture studies revealed a significant increase in thiobarbituric acid reactive substances in the culture medium of lens epithelial cells after irradiation and treatment with glycated proteins. Lens proteins had a protective effect against UVA induced cytotoxicity, however, this protective effect decreased with the increasing photosensitizer activity of experimentally glycated proteins. The documented glycation-related photosensitization could explain the accelerated pathogenic changes in human lens at advanced age and under diabetic conditions.  相似文献   

18.
Oxidative stress is currently suggested to play as a pathogenesis in the development of diabetes mellitus. The present study was designed to evaluate the effect of Casearia esculenta root extract on oxidative stress-related parameters in streptozotocin (STZ) -induced diabetic rats. Antidiabetic treatment with C. esculenta root extract (45 days) significantly (p < .05) decreased thiobarbituric acid reactive substances (TBARS) and remarkably improved tissue antioxidants status such as glutathione (GSH), ascorbic acid (vitamin C) and alpha-tocopherol (vitamin E) in liver and kidney of STZ-diabetic rats. In diabetics rats, the activities of enzymatic antioxidants such as superoxide dismutase (SOD, EC 1.11.1.1) catalase (CAT, EC 1.11.1.6) were decreased significantly while the activity of glutathione peroxidase (GPx, EC 1.11.1.9) decreased in the liver and increased in the kidney. The treatment of diabetic rats with C. esculenta root extract over a 45-day period returned these levels close to normal. These results suggest that C. esculenta root extracts exhibit antiperoxidative as well as antioxidant effects in STZ-induced diabetic rats.  相似文献   

19.
We investigated the effects of herb extracts, Rhus verniciflua, Agrimonia pilosa, Sophora japonica, and Paeonia suffruticosa, on the lowering of blood glucose levels and thiobarbituric acid reactive substances (TBARS) in streptozotocin (STZ)-induced diabetic rats. After 4 weeks, oral administration of Rhus verniciflua extract (50 mg/kg) exhibited a significant decrease in blood glucose levels in diabetic rats (P<0.05). Blood TBARS concentrations, the products of glucose oxidation in blood, were also lowered by Rhus verniciflua extract supplementation. In addition, Sophora japonica and Paeonia suffruticosa extracts significantly reduced TBARS levels versus diabetic controls. Serum concentrations of liver-function marker enzymes, GOT and GPT, were also restored by Rhus verniciflua (50 mg/kg) supplementation in diabetic rats.  相似文献   

20.
Increased oxidative stress is believed to be an important factor in the development of diabetic complications. In this study, the effect of diabetes on the susceptibility of synaptosomes to oxidative stress, induced by the oxidizing system ascorbate/Fe2+, on the activity of antioxidant enzymes and on the levels of glutathione and vitamin E was investigated. Synaptosomes were isolated from brain of 29-weeks-old Goto-Kakizaki (GK) rats, a model of non-insulin dependent diabetes mellitus and from normal Wistar rats. Synaptosomes isolated from GK rats displayed a lower susceptibility to lipid peroxidation, as assessed by quantifying thiobarbituric acid reactive substances (TBARS), than normal rats (5.33 +/- 0.79 and 7.58 +/- 0.7 nmol TBARS/mg protein, respectively). In the absence of oxidants, no significant differences were found between the levels of peroxidation in synaptosomes of diabetic or control rats. Superoxide dismutase (SOD), glutathione peroxidase and glutathione reductase activities were unaltered in the brain of diabetic rats. There were no statistically significant differences in fatty acid composition of total lipids and reduced glutathione levels in synaptosomes of diabetic and control rats. The decreased susceptibility to membrane lipid peroxidation of diabetic rats synaptosomes correlated with a 1.3-fold increase in synaptosomal vitamin E levels. Vitamin E levels in plasma were also higher in diabetic rats (21.32 micromol/l) as compared to normal rats (15.13 micromol/l). We conclude that the increased resistance to lipid peroxidation in GK rat brain synaptosomes may be due to the increased vitamin E content, suggesting that diabetic animals might develop enhanced defense systems against brain oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号